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A Mathematical Model for the Behavior of

Individuals in a Social Field

Abstract

Related to an idea of Lewin, a mathematical model for behavioral changes under the
influence of a social field is developed. The social field reflects public opinion, social
norms and trends. It is not only given by external factors (the environment) but also
by the interactions of individuals. Two important kinds of interaction processes are
distinguished: Imitative and avoidance processes. Variations of individual behavior
are taken into account by “diffusion coefficients”.
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A Mathematical Model for the Behavior of
Individuals in a Social Field

1 Introduction

Many models have been developed for behavioral changes, but only a few are formulated
in terms of mathematical relations. For example,

• game theory (von Neumann and Morgenstern, 1944), based on the concept of
success of meeting strategies, is used for the description of cooperation and compe-
tition processes among individuals,

• decision theories (Domencich and McFadden, 1975, Ortúzar and Willumsen,
1990), assuming the maximization of utility, successfully model the choice behavior
among several alternatives,

• diffusion models (Coleman, 1964, Bartholomew, 1967, Granovetter, 1983,
Kennedy, 1983) mathematically describe the spread of behaviors or opinions, ru-
mors, innovations, etc.

All these models are related to a more general behavioral model discussed in the fol-
lowing. This model is based on Boltzmann-like equations and includes spontaneous (or
externally induced) behavioral changes and behavioral changes by pair interactions of
individuals (sect. 2). These changes are described by transition rates. They reflect the
results of mental and psychical processes, which could be simulated with the help of Os-

good and Tannenbaum’s (1955) congruity principle, Heider’s (1946) balance theory or
Festinger’s (1957) dissonance theory. However, it is sufficient for our model to deter-
mine the transition rates empirically (sect. 5). The ansatz used for the transition rates
distinguishes imitative and avoidance processes, and assumes utility maximization by a
variant of the multinomial logit model (Domencich and McFadden, 1975, Ortúzar

and Willumsen, 1990) (sect. 2.1).

In section 3 a consequent mathematical formulation related to an idea of Lewin (1951) is
developed, according to which the behavior of individuals is guided by a social field. This
formulation is achieved by a second order Taylor approximation of the Boltzmann-
like equations leading to diffusion equations. Because of their relation with the Boltz-

mann equation (Boltzmann, 1964) and the Fokker-Planck equation (Fokker, 1914,
Planck, 1917) they will be called the Boltzmann-Fokker-Planck equations. Accord-
ing to these new equations the most probable behavioral change is given by a vectorial
quantity that can be interpreted as social force (sect. 3.1). The social force results from ex-
ternal influences (the environment) as well as from individual interactions. In special cases
the social force is the derivative (gradient) of a potential. This potential reflects public
opinion, social norms and trends, and will be called the social field. By diffusion coeffi-
cients individual variation of the behavior (the “freedom of will”) is taken into account.
In section 4 representative cases are illustrated by computer simulations.
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The Boltzmann-Fokker-Planck model for the behavior of individuals under the in-
fluence of a social field shows some analogies with the physical model for the behavior of
electrons in an electric field (e.g. of an atomic nucleus) (Helbing, 1992a,c). In particular,
individuals and electrons influence the concrete form of the effective social, respectively,
electric field. However, the behavior of electrons is governed by a different equation: the
Schrödinger equation (Schrödinger, 1926, Davydov, 1976).

2 The Boltzmann-like behavioral model

Let us consider a population consisting of a great number N ≫ 1 of individuals. Concern-
ing a special topic of interest, these individuals show a behavior x out of several possible
behaviors in the set Ω.

Due to “freedom of the will” one cannot expect a deterministic theory for the temporal
change dx/dt of the individual behavior x(t) to be realistic. However, one can construct
a model for the change of the probability distribution P (x, t) of behaviors x(t) within
the given population (P (x, t) ≥ 0,

∑

x∈Ω

P (x, t) = 1). A theory of this kind is, of course,

stochastic. In order to take into account several types a of behavior, we may distinguish

A subpopulations a consisting of Na ≫ 1 individuals (
A∑

a=1

Na = N). Then, the following

relation holds:

P (x, t) =
A∑

a=1

Na

N
Pa(x, t) . (1)

Our goal is now to find a suitable equation for the probability distribution Pa(x, t) of
behaviors within subpopulation a (Pa(x, t) ≥ 0,

∑

x∈Ω

Pa(x, t) = 1). If we neglect memory

effects (cf. sect. 6.1), the desired equation is of the form

d

dt
Pa(x, t) = inflow into x− outflow from x . (2)

Whereas the inflow into x is given as the sum over all absolute transition rates describing
changes from an arbitrary behavior x′ to x, the outflow from x is given as the sum over
all absolute transition rates describing changes from x to another behavior x′. Since the
absolute transition rate of changes from x to x′ is the product wa(x′|x; t)Pa(x, t) of the
relative transition rate wa(x′|x; t) for a change to behavior x′ given x, and the probability
Pa(x, t) of behavior x, we arrive at the explicit equation

d

dt
Pa(x, t) =

∑

x′∈Ω
(x′ 6=x)

[
wa(x|x′; t)Pa(x

′, t)− wa(x′|x; t)Pa(x, t)
]
. (3)

wa(x′|x; t) has the meaning of a transition probablility from x to x′ per unit time and
takes into account the behavioral variations between the individuals (occurring even
within the same type a of behavior!).

In the following we have to specify the relative transition rates wa(x′|x; t), which will turn
out to be effective transition rates. If we restrict the model to spontaneous (or externally
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induced) behavioral changes and behavioral changes due to pair interactions, we have
(Helbing, 1992a,c):

wa(x′|x; t) := wa(x
′|x; t) +

A∑

b=1

∑

y∈Ω

∑

y′∈Ω

Nb w̃ab(x
′, y′|x, y; t)Pb(y, t) . (4)

wa(x
′|x; t) describes the rate of spontaneous (resp. externally induced) transitions from

x to x′ for individuals of subpopulation a. w̃ab(x
′, y′|x, y; t) is the transition rate for two

individuals of types a and b to change their behaviors from x and y to x′ and y′, respec-
tively, due to pair interactions. The total frequency of these interactions is proportional
to the probability Pb(y, t) of behavior y within subpopulation b and the number Nb of
individuals of type b. We have to sum up over b, y, and y′ since all specifications of
these variables are effectively connected with transitions from x to x′ of individuals of
subpopulation a.

Inserting (4) into (3), we now obtain the socalled Boltzmann-like equations (Helbing,
1992a,c)

d

dt
Pa(x, t) =

∑

x′∈Ω

[
wa(x|x

′; t)Pa(x
′, t)− wa(x

′|x; t)Pa(x, t)
]

(5a)

+
A∑

b=1

∑

x′∈Ω

∑

y∈Ω

∑

y′∈Ω

wab(x, y′|x′, y; t)Pb(y, t)Pa(x
′, t)

−
A∑

b=1

∑

x′∈Ω

∑

y∈Ω

∑

y′∈Ω

wab(x
′, y′|x, y; t)Pb(y, t)Pa(x, t) (5b)

with
wab(x

′, y′|x, y; t) := Nb w̃ab(x
′, y′|x, y; t) . (6)

Obviously, (5b) depends nonlinearly (quadratically) on the probability distributions
Pa(x, t) (resp. Pb(y, t)) which is due to the pair interactions.

The Boltzmann-like equations originally had been developed for the description of the
kinetics of gases (Boltzmann, 1964). However, they have also been applied to atti-
tude formation (Helbing, 1992b,c) and the avoidance behavior of pedestrians (Helbing,
1992c,d).

It is possible to generalize the model to simultaneous interactions of an arbitrary number
of individuals (i.e., higher order interactions) (Helbing, 1992a,c). However, in most cases
behavioral changes are dominated by pair interactions (dyadic interactions). Many of the
phenomena occurring in social interaction processes can already be understood in terms
of pair interactions.

2.1 The form of the transition rates

For models of behavioral changes the following special form of the effective transition
rates (4) has been found to be suitable (Helbing, 1992b,c,e):

wa(x′|x; t) := νa(t)Ra(x
′|x; t) +

A∑

b=1

νab(t)
[
f 1

ab(t)Pb(x
′, t) + f 2

ab(t)Pb(x, t)
]
Ra(x′|x; t) . (7)
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Here,

• νa(t) is a measure of the rate of spontaneous (or externally induced) behavioral
changes within subpopulation a.

• Ra(x
′|x; t) [resp. Ra(x′|x; t)] is the readiness of an individual of subpopulation a to

change behavior from x to x′ spontaneously [resp. in pair interactions].

• νab(t) ≡ Nb ν̃ab(t) is the interaction rate of an individual of subpopulation a with
individuals of subpopulation b.

• f 1
ab(t) is a measure for the frequency of imitative processes

x′, x′ ←− x, x′ (x 6= x′) , (8)

where an individual of subpopulation a takes over the behavior x′ of an individual
of subpopulation b. The total frequency of imitative processes is proportional to the
probablility Pb(x

′, t) of behavior x′ within subpopulation b.

• f 2
ab(t) is a measure for the frequency of avoidance processes

x′, x←− x, x (x 6= x′) , (9)

where an individual of subpopulation a changes the behavior x to another behavior
x′ if meeting an individual of subpopulation b with the same behavior (defiant
behavior, snob effect). The total frequency of avoidance processes is proportional to
the probablility Pb(x, t) of behavior x within subpopulation b.

A more detailled discussion of the different kinds of interaction processes and of ansatz
(7) is given in publications of Helbing (1992b,c,e).

For Ra(x′|x; t) we take the quite general form

Ra(x′|x; t) =
eUa(x′,t)−Ua(x,t)

Da(x′, x; t)
(10a)

with
Da(x

′, x; t) = Da(x, x′; t) > 0

(cf. Weidlich and Haag, 1988, Helbing, 1992c). Then, the readiness Ra(x′|x; t) for an
individual of subpopulation a to change behavior from x to x′ will be greater,

• the greater the difference in the utilities Ua(., t) of behaviors x′ and x,

• the smaller the incompatibility (“distance”) Da(x
′, x; t) between the behaviors x

and x′.

Similar to (10a) we use

Ra(x
′|x; t) =

eUa(x′,t)−Ua(x,t)

Da(x′, x; t)
, (10b)

4



and, therefore, allow the utility function Ua(x, t) for spontaneous (or externally induced)
behavioral changes to differ from the utility function Ua(x, t) for behavioral changes in
pair interactions. Ansatz (10) is related to the multinomial logit model (Domencich and
McFadden, 1975, Ortúzar and Willumsen, 1990). It assumes utility maximization
with incomplete information about the exact utility of a behavioral change from x to x′,
which is, therefore, estimated and stochastically varying (cf. Helbing, 1992c).

Computer simulations of the Boltzmann-like equations (3), (7), (10) are discussed and
illustrated in Helbing (1992b,c,e) (cf. also sect. 4).

2.2 Special fields of application in the social sciences

The Boltzmann-like equations (3), (7) include a variety of special cases, which have
become very important in the social sciences:

• The logistic equation (Pearl, 1924, Verhulst, 1845) describes limited growth
processes. Let us consider the situation of two behaviors x ≡ x ∈ {1, 2} (i.e.,
Pa(1, t) = 1 − Pa(2, t)) and one subpopulation (A = 1). x = 2 may, for example,
have the meaning to apply a certain strategy, and x = 1 not to do so. If only
imitative processes

2, 2←− 1, 2 (11)

and processes of spontaneous replacement

1←− 2 (12)

are considered, one arrives at the logistic equation

d

dt
P1(2, t) = −ν1(t)R1(1|2; t)P1(2, t) + ν11(t)f

1
11(t)R

1(2|1; t)
(
1− P1(2, t)

)
P1(2, t)

≡ A(t)P1(2, t)
(
B(t)− P1(2, t)

)
. (13)

• The gravity model (Zipf, 1946, Ravenstein, 1876) describes processes of exchange
between different places x. Its dynamical version results for Ra(x

′|x; t) ≡ 0, f 1
ab(t) ≡

1, f 2
ab(t) ≡ 0, and A = 1:

d

dt
P (x, t) = ν(t)

∑

x′∈Ω

[
eU(x,t)−U(x′,t)

D(x, x′)
−

eU(x′,t)−U(x,t)

D(x′, x)

]
P (x, t)P (x′, t) . (14)

Here, we have dropped the index a because of a = 1. P (x, t) is the probability of
being at place x. The absolute rate of exchange from x to x′ is proportional to the
probabilities P (x, t) and P (x′, t) at the places x and x′. D(x, x′) is often chosen as a
function of the metric distance ‖x−x′‖ between x and x′: D(x, x′) ≡ D(‖x−x′‖).

• The behavioral model of Weidlich and Haag (1983, 1988, Weidlich, 1991, 1994)
is based on spontaneous transitions. We obtain this model for f 1

ab(t) ≡ 0 ≡ f 2
ab(t)

and

Ua(x, t) := δa(x, t) +
A∑

b=1

κab Pb(x, t) . (15)
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Because of the dependence of the utilities Ua(x, t) on the behavioral distributions
Pb(x, t) the model assumes indirect interactions, which are, for example, mediated
by the newspapers, TV or radio. δa(x, t) is the preference of subpopulation a for
behavior x. κab are coupling parameters describing the influence of the behaviorial
distribution within subpopulation b on the behavior of subpoplation a. For κab > 0,
κab reflects the social pressure of behavioral majorities.

• The game dynamical equations (Hofbauer and Sigmund, 1988, Schuster et. al.,
1981, Helbing, 1992c,e, 1993) result for f 1

ab(t) ≡ δab, f 2
ab(t) ≡ 0, and

Ra(x′|x; t) := max
(
Ea(x

′, t)−Ea(x, t), 0
)
, (16)

where

δab :=

{
1 if a = b
0 if a 6= b

and max(x, y) :=

{
x if x ≥ y
y if y > x .

(17)

For a detailled interpretation of these relations see Helbing (1992c,e).

The explicit form of the game dynamical equations is

d

dt
Pa(x, t) =

∑

x′∈Ω

[
wa(x|x

′; t)Pa(x
′, t)− wa(x

′|x; t)Pa(x, t)
]

(18a)

+ νaa(t)Pa(x, t)
[
Ea(x, t)− 〈Ea〉

]
. (18b)

Whereas (18a) again describes spontaneous behavioral changes (“mutations”, inno-
vations), (18b) reflects competition processes leading to a “selection” of behaviors
with a success Ea(x, t) that exceeds the average success

〈Ea〉 :=
∑

x′∈Ω

Ea(x
′, t)Pa(x

′, t) . (19)

The success Ea(x, t) is connected with the socalled payoff matrices Aab ≡(
Aab(x, y)

)
by

Ea(x, t) := Aa(x) +
A∑

b=1

∑

y∈Ω

Aab(x, y)Pb(y, t) (20)

(Helbing, 1992c,e). Aa(x) means the success of behavior x with respect to the
environment.

Since the game dynamical equations (18) agree with the selection mutation equa-
tions (Hofbauer and Sigmund, 1988) they are not only a powerful tool in social
sciences and economy (Axelrod, 1984, von Neumann and Morgenstern, 1944,
Schuster et. al., 1981, Helbing, 1992c,e, 1993), but also in evolutionary biology
(Fisher, 1930, Eigen, 1971, Eigen and Schuster, 1979, Feistel and Ebeling,
1989).
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3 The Boltzmann-Fokker-Planck equations

We shall now assume the set Ω of possible behaviors forms a continuous space. The n
dimensions of this space correspond to different characteristic aspects of the considered
behaviors. In the continuous formulation, the sums in (3), (4) have to be replaced by
integrals:

d

dt
Pa(x, t) =

∫

Ω

dnx′
[
wa(x|x′; t)Pa(x

′, t)− wa(x′|x; t)Pa(x, t)
]
, (21a)

wa(x′|x; t) := wa(x
′|x; t) +

A∑

b=1

∫

Ω

dny
∫

Ω

dny′ Nb w̃ab(x
′, y′|x, y; t)Pb(y, t) . (21b)

A reformulation of the Boltzmann-like equations (21) via a second order Taylor ap-
proximation (Kramers-Moyal expansion (Kramers, 1940, Moyal, 1949)) leads to
diffusion equations (Helbing, 1992a,c):

∂

∂t
Pa(x, t) = −

n∑

i=1

∂

∂xi

[
Kai(x, t)Pa(x, t)

]
+

1

2

n∑

i,j=1

∂

∂xi

∂

∂xj

[
Qaij(x, t)Pa(x, t)

]
(22a)

with the effective drift coefficients

Kai(x, t) :=
∫

Ω

dnx′ (x′
i − xi)w

a(x′|x; t) (22b)

and the effective diffusion coefficients1

Qaij(x, t) :=
∫

Ω

dnx′ (x′
i − xi)(x

′
j − xj)w

a(x′|x; t) . (22c)

Because of their relation with the Boltzmann equation (Boltzmann, 1964) and the
Fokker-Planck equation (Fokker, 1914, Planck, 1917) equations (22) will be called
the Boltzmann-Fokker-Planck equations in the following (cf. Helbing 1992a,c). In
the Boltzmann-Fokker-Planck equations the drift coefficients Kai(x, t) govern the
systematic change (“drift”, motion) of the distribution Pa(x, t), whereas the diffusion
coefficients Qaij(x, t) describe the spread of the distribution Pa(x, t) due to fluctuations
resulting from the individual variation of behavioral changes.

For ansatz (7), the effective drift and diffusion coefficients can be split into contributions
due to spontaneous (or externally induced) transitions (k = 0), imitative processes (k =
1), and avoidance processes (k = 2):

Kai(x, t) =
2∑

k=0

Kk
ai(x, t) , Qaij(x, t) =

2∑

k=0

Qk
aij(x, t) , (23a)

1In a paper of Helbing (1992a) the expression for Qaij(x, t) contains additional terms due to another
derivation of (22). However, they make no contributions, since they result in vanishing surface integrals
(Helbing, 1992c).
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where

K0
ai(x, t) := νa(t)

∫
dnx′ (x′

i − xi)Ra(x
′|x; t) ,

K1
ai(x, t) :=

A∑

b=1

νab(t)f
1
ab(t)

∫
dnx′ (x′

i − xi)R
a(x′|x; t)Pb(x

′, t) ,

K2
ai(x, t) :=

A∑

b=1

νab(t)f
2
ab(t)

∫
dnx′ (x′

i − xi)R
a(x′|x; t)Pb(x, t) (23b)

and

Q0
aij(x, t) := νa(t)

∫
dnx′ (x′

i − xi)(x
′
j − xj)Ra(x

′|x; t) ,

Q1
aij(x, t) :=

A∑

b=1

νab(t)f
1
ab(t)

∫
dnx′ (x′

i − xi)(x
′
j − xj)R

a(x′|x; t)Pb(x
′, t) ,

Q2
aij(x, t) :=

A∑

b=1

νab(t)f
2
ab(t)

∫
dnx′ (x′

i − xi)(x
′
j − xj)R

a(x′|x; t)Pb(x, t) . (23c)

The behavioral changes induced by the environment are included in K0
ai(x, t) and

Q0
aij(x, t).

3.1 Social force and social field

The Boltzmann-Fokker-Planck equations (22) are equivalent to the stochastic equa-
tions (Langevin equations, 1908)

dxi

dt
= Fai(x, t) +

n∑

j=1

Gaij(x, t)ξj(t) (24a)

with

Kai(x, t) = Fai(x, t) +
1

2

n∑

j,k=1

[
∂

∂xk

Gaij(x, t)

]
Gajk(x, t) (24b)

and

Qaij(x, t) =
n∑

k=1

Gaik(x, t)Gakj(x, t) (24c)

(cf. Stratonovich, 1963, Helbing, 1992c). For an individual of subpopulation a the
vector ζa(x, t) with the components

ζai(x, t) =
n∑

j=1

Gaij(x, t)ξj(t) (25)

describes the contribution to the change of behavior x that is caused by behavioral fluctu-
ations ξ(t) (which are assumed to be delta-correlated and Gaussian (Helbing, 1992c)).
Since the diffusion coefficients Qaij(x, t) and the coefficients Gaij(x, t) are usually small
quantities, we have Fai(x, t) ≈ Kai(x, t) (cf. (24b)), and (24a) can be put into the form

dx

dt
≈Ka(x, t) + fluctuations. (26)

8



Whereas the fluctuation term describes individual behavioral variations, the vectorial
quantity

Ka(x, t) :=




Ka1(x, t)
...

Kan(x, t)


 (27)

drives the systematic change of the behavior x(t) of individuals of subpopulation a. There-
fore, it is justified to denote Ka(x, t) as social force acting on individuals of subpopulation
a. With that we have attained a very intuitive formulation of social processes, according
to which behavioral changes are caused by social forces.

On the one hand, social forces influence the behavior of the individuals, but on the other
hand, due to interactions, the behavior of the individuals also influences the social forces
via the behavioral distributions Pa(x, t) (cf. (21b), (22b)). That means, Ka(x, t) is a
function of the social processes within the given population.

Under the integrability conditions

∂

∂xj

Kai(x, t) =
∂

∂xi

Kaj(x, t) for all i, j (28)

there exists a time-dependent potential

Va(x, t) := −

x∫
dx′ ·Ka(x

′, t) ≡ −
n∑

i=1

x∫
dx′

i Kai(x
′, t) , (29)

so that the social force is given by its derivative (by its gradient ∇):

Ka(x, t) = −∇Va(x, t) , i.e., Kai(x, t) = −
∂

∂xi

Va(x, t) . (30)

The potential Va(x, t) can be understood as social field. It reflects the social influences
and interactions relevant for behavioral changes: the public opinion, trends, social norms,
etc.

3.2 Discussion of the concept of force

Clearly, the social force is not a force obeying the Newtonian (1687) laws of mechanics
(cf. Greenwood, 1988). Instead, the social force Ka(x, t) is a vectorial quantity with
the following properties:

• Ka(x, t) drives the temporal change dx/dt of another vectorial quantity: the be-
havior x(t) of an individual of subpopulation a.

• The component

Kab(x, t) := νab(t)
∫

Ω

dnx′ (x′ − x)
[
f 1

ab(t)Pb(x
′, t) + f 2

ab(t)Pb(x, t)
]
Ra(x′|x; t) (31)

of the social force Ka(x, t) describes the reaction of subpopulation a on the behav-
ioral distribution within subpopulation b and usually differs from Kba(x, t), which
describes the influence of subpopulation a on subpopulation b.

9



• Neglecting fluctuations, the behavior x(t) does not change if Ka(x, t) vanishes.
Ka(x, t) = 0 corresponds to an extremum of the social field Va(x, t), because it
means

∇Va(x, t) = 0 , i.e.,
∂

∂xi

Va(x, t) = 0 for all i ∈ {1, . . . , n} . (32)

We will now compare our results with Lewin’s (1951) social field theory. From social
psychology it is well-known that the behavior of an individual is determined by the totality
of environmental influences and his or her personality. Inspired by electro-magnetic field
theory, social field theory claims that environmental influences can be considered as a
dynamical force field, which should be mathematically representable. A temporal change
of this field will evoke a psychical tension which, then, induces a (behavioral) compensation.

In the following it will turn out that our model allows a fully mathematical specification
of the field theoretical ideas, which was still to be found:

• Let us assume that an individual’s objective is to behave in an optimal way with
respect to the social field Va(x, t), that means, he or she tends to a behavior corre-
sponding to a minimum of the social field.

• If the behavior x does not agree with a minimum of the social field Va(x, t) this
evokes a force

Ka(x, t) = −∇Va(x, t) (33)

that is given by the gradient of the social field Va(x, t) (pulling into the direction
of steepest descent of Va(x, t)). The force Ka(x, t) plays the role of the psychical
tension. It induces a behavioral change according to

dx

dt
≈Ka(x, t) . (34)

• The behavioral change dx/dt drives the behavior x(t) towards a minimum x∗
a of the

social field Va(x, t). When the minimum x∗
a is reached, then

∇Va(x, t) = 0 (35)

holds and, therefore, Ka(x, t) = 0. As a consequence, the psychical tension vanishes,
that means, it is compensated by the previous behavioral changes.

When the psychical tension Ka(x, t) vanishes then, except for fluctuations, no be-
havioral changes take place—in accordance with (34). The individual has reached
an equilibrium within the social field, then.

• Note, that the social fields Va(x, t) of different subpopulations a usually have dif-
ferent minima x∗

a. This means that individuals of different types a of behavior will
normally feel different psychical tensions Ka(x, t). In other words, index a distin-
guishes different personalities.
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4 Computer simulations

The Boltzmann-Fokker-Planck equations are able to describe a broad spectrum of
social phenomena. In the following, some of the results shall be illustrated by computer
simulations. We shall examine the case of A = 2 subpopulations, and a situation for which
the interesting aspect of the individual behavior can be described by a certain position
x on a one-dimensional continuous scale (i.e., n = 1, x ≡ x). A concrete example for
this situation would be the case of opinion formation. Here, conservative and progressive
thinking individuals could be distinguished by different subpopulations. The position x
would describe the grade of approval or disapproval with respect to a certain political
option (for example, SDI, power stations, Golf war, etc.).

In the one-dimensional case, the integrability conditions (28) are automatically fulfilled,
and the social field

Va(x, t) = −

x∫

x0

dx′ Ka(x
′, t)− ca(t) (36)

is well-defined. The parameter ca(t) can be chosen arbitrarily. We will take for ca(t) the
value that shifts the absolute minimum of Va(x, t) to zero, that means,

ca(t) := min
x


−

x∫

x0

dx′ Ka(x
′, t)


 . (37)

• Since we will restrict the simulations to the case of imitative or avoidance processes,
the shape of the social field Va(x, t) changes with time only due to changes of the
probability distributions Pa(x, t) (cf. (23)), that means, due to behavioral changes
of the individuals (see figures 1 to 6).

In the one-dimensional case one can find the formal stationary solution

Pa(x) = Pa(x0)
Qa(x0)

Qa(x)
exp


2

x∫

x0

dx′ Ka(x
′)

Qa(x′)


 , (38)

which we expect to be approached in the limit of large times t →∞. Due to the depen-
dence of Ka(x) and Qa(x) on Pa(x), equations (38) are only implicit equations. However,
from (38) we can derive the following conclusions:

• If the diffusion coefficients are constant (Qa(x) ≡ Qa), (38) simplifies to

Pa(x) = Pa(x0) exp

(
−

2

Qa

[
Va(x) + ca

])
, (39)

that means, the stationary solution Pa(x) is completely determined by the social
field Va(x). Especially, Pa(x) has its maxima at the positions x∗

a, where the social
field Va(x) has its minima (see fig. 1). The diffusion constant Qa regulates the width
of the behavioral distribution Pa(x). For Qa = 0 there were no individual behavioral
variations, and the behavioral distribution Pa(x) were sharply peaked at the deepest
minimum x∗

a of Va(x).
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• If the diffusion coefficients Qa(x) are varying functions of the position x, the behav-
ioral distribution Pa(x) is also influenced by the concrete form of Qa(x). From (38)
one expects high behavioral probabilities Pa(x) where the diffusion coefficients Qa(x)
are small (see fig. 2, where the probability distribution P1(x) cannot be explained
solely by the social field V1(x)).

• Since the stationary solution Pa(x) depends on both, Ka(x) and Qa(x), different
combinations of Ka(x) and Qa(x) can lead to the same probability distribution
Pa(x) (see fig. 4 in the limit of large times).

For the following simulations, we shall assume x ∈ [1/20, 1] and use the ansatz

Ra(x′|x; t) =
eUa(x′,t)−Ua(x,t)

Da(x′, x; t)
(40a)

for the readiness Ra(x′|x; t) to change from x to x′ (cf. (10a)). With the utility function

Ua(x, t) := −
1

2

(
x− xa

la

)2

, la :=
La

20
(40b)

subpopulation a prefers behavior xa. La means the indifference of subpopulation a with
respect to variations of the position x. Moreover, we take

νab(t)

Da(x′, x; t)
:= e−|x′−x|/r , r =

R

20
, (40c)

where R can be interpreted as measure for the range of interaction. According to (40c),
the rate of behavioral changes is the smaller the greater they are. Only small changes
of the position (i.e., between neighboring positions) contribute with an appreciable rate.
Figure 1 to 6 show the respective values of R, L1, and L2 used in the simulations.

Note, that R and the readiness Ra are different quantities. For very small values of the
range R of interaction the diffusion coefficients Qa(x) can be neglected and the fluctuations
play a neglible role, that means, behavioral changes are mainly given by the social field
(see fig. 1). For greater but still small values of R, the diffusion coefficients have to
be taken into account in order to fully understand the temporal development of the
behavioral distribution Pa(x, t) (see fig. 2). If R exceeds a certain value, the Taylor

approximation is invalid, and the Boltzmann-like equations should be applied instead
of the Boltzmann-Fokker-Planck equations.

4.1 Sympathy and interaction frequency

Let sab(t) be the degree of sympathy which individuals of subpopulation a feel towards
individuals of subpopulation b. Then, one expects the following: Whereas the frequency
f 1

ab(t) of imitative processes will be increasing with sab(t), the frequency f 2
ab(t) of avoidance

processes will be decreasing with sab(t). This functional relationship can, for example, be
described by

f 1
ab(t) := f 1

a (t) sab(t) ,

f 2
ab(t) := f 2

a (t)
(
1− sab(t)

)
(41)
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with
0 ≤ sab(t) ≤ 1 . (42)

f 1
a (t) is a measure for the frequency of imitative processes within subpopulation a, f 2

a (t)
a measure for the frequency of avoidance processes. If we assume the sympathy between
individuals of the same subpopulation to be be maximal, we have s11(t) ≡ 1 ≡ s22(t).

4.2 Imitative processes (f 1
a (t) ≡ 1, f 2

a (t) ≡ 0)

In the following simulations of imitative processes we assume the preferred positions to
be x1 = 6/20 and x2 = 15/20. With

(
sab(t)

)
≡
(
f 1

ab(t)
)

:=

(
1 1
0 1

)
, (43)

the individuals of subpopulation a = 1 like the individuals of subpopulation a = 2, but
not the other way round. That means, subpopulation 2 influences subpopulation 1, but
not vice versa.

As expected, in both behavioral distributions Pa(x, t) there appears a maximum around
the preferred behavior xa. In addition, due to imitative processes of subpopulation 1, a
second maximum of P1(x, t) develops around the preferred behavior x2 of subpopulation 2.
This second maximum is small, if the indifference L1 of subpopulation 1 with respect to
variations of the position x is low (see fig. 1). For high values of the indifference L1 even
the majority of individuals of subpopulation 1 imitates the behavior of subpopulation 2
(see fig. 2)! One could say, the individuals of subpopulation 2 act as trendsetters. This
phenomenon is typical for fashion.

We shall now consider the case

(
sab(t)

)
≡
(
f 1

ab(t)
)

:=

(
1 1
1 1

)
, (44)

for which the subpopulations influence each other mutually with equal strengths. If the
indifference La with respect to changes of the position x is small in both subpopulations a,
each probability distribution Pa(x, t) has two maxima. The higher maximum is located
around the preferred position xa. A second maximum can be found around the position
preferred in the other subpopulation. It is the higher, the greater the indifference La is
(see fig. 3).

However, if La exceeds a certain value in at least one subpopulation, a socalled phase
transition (that means, a qualitative different situation) occurs, since only one maximum
develops in each behavioral distribution Pa(x, t)! Despite the fact that the social fields
Va(x, t) and diffusion coefficients Qa(x, t) of the subpopulations a are different because
of their different preferred positions xa (and different utility functions Ua(x, t)), the be-
havioral distributions Pa(x, t) agree after some time! Especially, the maxima x∗

a of the
distributions Pa(x, t) are located at the same position x∗ in both subpopulations. One
could say, the two subpopulations made a compromise. The compromise x∗ is nearer to
the position xa of the subpopulation a with the lower indifference La (see fig. 4).

13



4.3 Avoidance processes (f 1
a (t) ≡ 0, f 2

a (t) ≡ 1)

For the simulation of avoidance processes we assume with x1 = 9/20 and x2 = 12/20 that
both subpopulations nearly prefer the same behavior. Figure 5 shows the case, where the
individuals of different subpopulations dislike each other:

(
sab(t)

)
:=

(
1 0
0 1

)
, i.e.,

(
f 2

ab(t)
)
≡

(
0 1
1 0

)
. (45)

This corresponds to a mutual influence of each subpopulation on the other. The compu-
tational results indicate that

• individuals avoid behaviors which are found in the other subpopulation.

• The subpopulation a = 1 with the lower indifference L1 < L2 is distributed around
the preferred behavior x1 and pushes away the other subpopulation!

Despite the fact that the initial behavioral distribution Pa(x, 0) agrees in both subpopula-
tions, there is nearly no overlapping of P1(x, t) and P2(x, t) after some time. This is typical
of polarization phenomena in the society. Well-known examples are the development of
ghettos or the formation of extremist groups.

In figure 6, we assume that the individuals of subpopulation 2 like the individuals of
subpopulation 1 and, therefore, do not react to the behaviors in subpopulation 1 with
avoidance processes:

(
sab(t)

)
:=

(
1 0
1 1

)
, i.e.,

(
f 2

ab(t)
)
≡

(
0 1
0 0

)
. (46)

As a consequence, P2(x, t) remains unchanged with time, whereas P1(x, t) drifts away
from the preferred behavior x1 due to avoidance processes. Surprisingly, the polarization
effect is much smaller than in figure 5! The distributions P1(x, t) and P2(x, t) overlap
considerably. This is, because the slope of P2(x, t) is smaller than in figure 5 (and remains
constant). As a consequence, the probability for an individual of subpopulation 1 to meet
a disliked individual of subpopulation 2 with the same behavior x can hardly be decreased
by a small behavioral change. One may conclude, that polarization effects (which often
lead to an escalation) can be reduced, if individuals do not return dislike with dislike.

5 Empirical determination of the model parameters

For practical purposes one has, of course, to determine the model parameters from empiri-
cal data. Therefore, let us assume we know empirically the distribution functions P e

a (x, tl),
[the interaction rates νe

ab(tl),] and the effective transition rates wa
e (x

′|x; tl) (x′ 6= x) for
a couple of times tl ∈ {t0, . . . , tL}. The corresponding effective social fields V e

a (x, tl) and
diffusion coefficients Qe

aij(x, tl) are, then, easily obtained as

V e
a (x, tl) := −

x∫
dx′ ·Ke

a(x
′, tl) ≡ −

n∑

i=1

x∫
dx′

i K
e
ai(x

′, tl) (47a)
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with
Ke

ai(x, tl) :=
∫

Ω

dnx′ (x′
i − xi)w

a
e (x

′|x; tl) , (47b)

and
Qe

aij(x, tl) :=
∫

Ω

dnx′ (x′
i − xi)(x

′
j − xj)w

a
e (x

′|x; tl) . (48)

Much more difficult is the determination of the utility functions U e
a(x, tl), Ua

e (x, tl), the
distance functions De

a(x
′, x; tl), and the rates νe

a(tl), ν1e
ab(tl) := νe

ab(tl)f
1e
ab (tl), ν2e

ab(tl) :=
νe

ab(tl)f
2e
ab (tl). This can be done by numerical minimization of the error function

F :=
A∑

a=1

L∑

l=0

∑

x,x′∈Ω
(x′ 6=x)

1

2

{[
wa

e (x
′|x; tl)−

1

Da(x′, x; tl)
ga(x

′, x; tl)

]
P e

a (x, tl)

}2

, (49)

for example with the method of steepest descent (cf. Forsythe et. al., 1977). In (49), we
have introduced the abbreviation

ga(x
′, x; tl) := νa(tl)e

Ua(x′,tl)−Ua(x,tl)+
A∑

b=1

[
ν1

ab(tl)P
e
b (x′, tl)+ν2

ab(tl)P
e
b (x, tl)

]
eUa(x′,tl)−Ua(x,tl) .

(50)
It turns out (cf. Helbing, 1992c), that the rates νa(tl) have to be taken constant during
the minimization process (e.g., νa(tl) ≡ 1), whereas the parameters Ua(x, tl), Ua(x, tl),
ν1

ab(tl) := νe
ab(tl)f

1
ab(tl) and ν2

ab(tl) := νe
ab(tl)f

2
ab(tl) are to be varied. For 1/Da(x

′, x; tl) one
inserts

1

Da(x′, x; tl)
=

na(x
′, x; tl)

da(x′, x; tl)
(51a)

with

na(x
′, x; tl) := wa

e (x
′|x; tl)ga(x

′, x; tl)
[
P e

a (x, tl)
]2

+ wa
e (x|x

′; tl)ga(x, x′; tl)
[
P e

a (x′, tl)
]2

(51b)
and

da(x
′, x; tl) :=

[
ga(x

′, x; tl)P
e
a (x, tl)

]2
+
[
ga(x, x′; tl)P

e
a (x′, tl)

]2
. (51c)

(51) follows from the minimum condition for Da(x
′, x; tl) (cf. Helbing, 1992c).

Since F may have a couple of minima due to its nonlinearity, suitable start parameters
have to be taken. Especially, the numerically determined rates ν1

ab(tl) and ν2
ab(tl) have to

be non-negative.

If F is minimal for the parameters Ua(x, tl), Ua(x, tl), Da(x
′, x; tl), νa(tl), ν1

ab(tl) and
ν2

ab(tl), this is (as can easily be checked) also true for the scaled parameters

U e
a(x, tl) := Ua(x, tl)− Ca(tl) ,

Ua
e (x, tl) := Ua(x, tl)− Ca(tl) ,

De
a(x

′, x; tl) :=
Da(x

′, x; tl)

Da(tl)
,

νe
a(tl) :=

νa(tl)

Da(tl)
,
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ν1e
ab(tl) :=

ν1
ab(tl)

Da(tl)
,

ν2e
ab(tl) :=

ν2
ab(tl)

Da(tl)
. (52)

In order to obtain unique results we put

∑

x∈Ω

U e
a(x, tl)

!
≡ 0 ,

∑

x∈Ω

Ua
e (x, tl)

!
≡ 0 , (53)

and ∑

x,x′∈Ω
(x′ 6=x)

1

De
a(x

′, x; tl)

!
≡

∑

x,x′∈Ω
(x′ 6=x)

1 , (54)

which leads to

Ca(tl) :=

∑

x∈Ω

Ua(x, tl)

∑

x∈Ω

1
, Ca(tl) :=

∑

x∈Ω

Ua(x, tl)

∑

x∈Ω

1
, (55)

and

1

Da(tl)
:=

∑

x,x′∈Ω
(x′ 6=x)

1

Da(x′, x; tl)

∑

x,x′∈Ω
(x′ 6=x)

1
. (56)

Ca(tl) and Ca(tl) are mean utilities, whereas Da(tl) is a kind of unit of distance.

The distances De
a(x

′, x; t) are suitable quantities for multidimensional scaling (Kruskal

and Wish, 1978, Young and Hamer, 1987). They reflect the “psychical structure” (psy-
chical topology) of individuals of subpopulation a, since they determine which behaviors
are more or less related (compatible) (comp. to Osgood et. al., 1957). By the dependence
on a, De

a(x
′, x; t) distinguishes different psychical structures resulting in different types a

of behavior and, therefore, different “characters” (personalities).

5.1 Evaluation of the German migration data

It is not easy to find suitable data for the determination of the model parameters, since
usually there only exist data for the temporal development of a certain behavioral dis-
tribution Pa(x, tl), but not for the corresponding effective transition rates wa

e (x
′|x; tl).

However, for a few countries all necessary data are known about migration between dif-
ferent regions (see Weidlich and Haag, 1988). In this case, the behavior x ≡ x means
to live in region x ∈ {1, 2, . . . , S}, where S is the number of distinguished regions.

In the following, the results for migration in West Germany shall be presented. West
Germany is divided into 10 federal states and the region of West Berlin (see figure 7 and
table 1). The data for these S = 11 regions can be found in the Statistische Jahrbücher
of the years 1960 to 1985 on an annual basis (t0 = 1960, t1 = 1961, . . ., tL = 1985). Our
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data analysis will assume—with respect to migration—one more or less homogeneous
population, that means, we have A = 1, and the index a can be dropped. Figure 8 shows
some examples for the temporal variation of the effective transition rates we(x

′|x; tl).

Using the method of steepest descent, the minimization of the error function (49), (50)
gives the following results:

ν2(tl) ≈ 0 , (57)

that means, avoidance processes are negligible. The rate νe(tl) of spontaneous behavioral
changes and the rate ν1e(tl) of imitative processes are depicted in figure 9. The utility
functions U e(x, tl) for spontaneous changes and the utility functions Ue(x, tl) for imitative
processes are illustrated in figures 10 and 11.

The irregulatity of the utility functions Ue(x, tl) indicates that they probably fit random
fluctuations of the migration data. Indeed, a mathematical analysis proves that the term

ν1(tl)P
e(x, tl)

eU(x′,tl)−U(x,tl)

D(x′, x; tl)
= ν1e(tl)P

e(x, tl)
eUe(x′,tl)−Ue(x,tl)

De(x′, x; tl)
(58)

only explains 5.2 percent of the variance of the effective transition rates we(x
′|x; t). There-

fore, it makes no significant contribution to their mathematical description, and the mi-
gration rates we(x

′|x; t) of West Germany can already be represented by the model

w(x′|x; tl) := ν(tl)
eU(x′,tl)−U(x,tl)

D(x′, x; tl)
= νe(tl)

eUe(x′,tl)−Ue(x,tl)

De(x′, x; tl)
. (59)

This result agrees with the model of Weidlich and Haag (1988)! Figure 12 shows
the corresponding rate νe(tl) of spontaneous changes, and figure 13 depicts the utility
functions U e(x, tl). The distances De(x′, x; tl) can be calculated from the formulas (51),
(52), and (56). They are not only a measure for the mean geographical distances, but
also for transaction costs (e.g., removal costs) and psychical differences (of the language,
mentality, etc.).

The replacement of the time dependent distances De(x′, x; tl) with the time independent
values De

∗(x
′, x) defined by

1

De
∗(x

′, x)
:=

1

L + 1

L∑

l=0

1

De(x′, x; tl)
(60)

(see table 2) allows for a further model reduction. The optimal value of the rate of spon-
taneous behavioral changes is, then, given by

νe
∗(tl) := νe(tl) ·

S∑

x,x′=1
(x′ 6=x)

1

De(x′, x; tl)
. (61)

Although the reduced model

w(x′|x; tl) := νe
∗(tl)

eUe(x′,tl)−Ue(x,tl)

De
∗(x

′, x)
(62)

only needs (S +1) · (L+1)+S · (S−1)/2 = 367 variables for the description of S · (S−1) ·
(L + 1) = 2860 effective transition rates we(x′|x; tl), it attains a very good correlation of
0.984 with the empirical data. For a more detailled discussion of this model, see Weidlich

and Haag (1988).
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6 Summary and outlook

In this article, a behavioral model has been proposed that incorporates in a consistent way
many models of social theory: the diffusion models, the multinomial logit model, Lewin’s
field theory, the logistic equation, the gravity model, the Weidlich-Haag model, and the
game dynamical equations. This very general model opens new perspectives concerning
a theoretical description and understanding of behavioral changes, since it is formulated
fully mathematically. It takes into account spontaneous (or externally induced) behavioral
changes and behavioral changes due to pair interactions. Two important kinds of pair
interactions have been distinguished: imitative processes and avoidance processes. The
model turns out to be suitable for computational simulations, but it can also be applied
to concrete empirical data.

6.1 Memory effects

The formulation of the model in the previous sections has neglected memory effects that
may also influence behavioral changes. However, memory effects can be easily included
by generalizing the Boltzmann-like equations to

d

dt
Pa(x, t) =

t∫

t0

dt′
∑

x′∈Ω

[
wa

t−t′(x|x
′; t′)Pa(x

′, t′)− wa
t−t′(x

′|x; t′)Pa(x, t′)
]

(63a)

with the effective transition rates

wa
t−t′(x

′|x; t′) := wt−t′

a (x′|x; t′) +
A∑

b=1

∑

y∈Ω

∑

y′∈Ω

wt−t′

ab (x′, y′|x, y; t′)Pb(y, t′) , (63b)

and generalizing the Boltzmann-Fokker-Planck equations to

∂

∂t
Pa(x, t) =

t∫

t0

dt′
{
−

n∑

i=1

∂

∂xi

[
Kt−t′

ai (x, t′)Pa(x, t′)
]

+
1

2

n∑

i,j=1

∂

∂xi

∂

∂xj

[
Qt−t′

aij (x, t′)Pa(x, t′)
]} (64a)

with the effective drift coefficients

Kt−t′

ai (x, t′) :=
∫

Ω

dnx′ (x′
i − xi)w

a
t−t′(x

′|x; t′) , (64b)

the effective diffusion coefficients

Qt−t′

aij (x, t′) :=
∫

Ω

dnx′ (x′
i − xi)(x

′
j − xj)w

a
t−t′(x

′|x; t′) , (64c)

and

wa
t−t′(x

′|x; t′) := wt−t′

a (x′|x; t′) +
A∑

b=1

∫

Ω

dny
∫

Ω

dny′ wt−t′

ab (x′, y′|x, y; t′)Pb(y, t′) . (64d)
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Obviously, in these formulas there only appears an additional integration over past times
t′ (Helbing, 1992c). The influence of the past results in a dependence of wa

t−t′(x
′|x; t′),

Kt−t′

ai (x, t′), and Qt−t′

aij (x, t′) on (t − t′). The Boltzmann-like equations (5) resp. the
Boltzmann-Fokker-Planck equations (22) used in the previous sections result from
(63) resp. (64) in the limit of short memory.

6.2 Group dynamics

The force model described in section 3 can serve as a new mathematical modelling concept.
For example, it has successfully been applied to the simulation of pedestrian behavior (cf.
Helbing, 1991).

Another interesting field is an application of the force model to group dynamics and group
formation. In this case we take A = N , that means, each subpopulation consists of one
individual only (Na = 1). Since Na ≫ 1 is violated, then, the temporal change dPa(x, t)/dt
of Pa(x, t), which describes the probability of individual a to show the behavior x at time t,
is additionally subject to fluctuations (cf. Helbing, 1992a,c). The interaction rates νab ≡
ν̃ab are related to the adjacency matrix and describe the social (interpersonal) network

(Burt, 1982). Moreover, the sympathy matrix
(
sab(t)

)
is affected by the social processes.

The crucial task for simulating group dynamics is, therefore, to set up equations for the
temporal change of sab(t). The topic of group dynamics will be treated in a forthcoming
paper.
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Figure 1: Imitative processes in the case of one-sided sympathy and low indifference
La with respect to behavioral changes.



Figure 2: As figure 1, but for high indifference La with respect to behavioral changes.



Figure 3: Imitative processes for mutual sympathy and low indifference La in both
subpopulations.



Figure 4: As figure 3, but for high indifference L2 in subpopulation 2.



Figure 5: Avoidance processes for mutual dislike of both subpopulations.



Figure 6: Avoidance processes for one-sided dislike.

Figure 7: The subdivision of West Germany into eleven federal states (from Weidlich

and Haag, 1988).



symbol region x name

+ 1 Schleswig-Holstein
⊙ 2 Hamburg
△ 3 Niedersachsen
2 4 Bremen
3 5 Nordrhein-Westfalen
⊕ 6 Hessen
1 7 Rheinland-Pfalz
× 8 Baden-Württemberg
▽ 9 Bayern
\ 10 Saarland
/ 11 Berlin

Table 1: The eleven federal states of West Germany, their names, and the symbols used
in the following figures.



Figure 8: Time dependence of some effective transition rates of migration in West Ger-
many.

Figure 9: Rate νe(tl) of spontaneous behavioral changes (2) and rate ν1e(tl) of imitative
processes (△) calculated from the migration data of West Germany.



Figure 10: Utility functions for spontaneous removals from one federal state to another in
West Germany.

Figure 11: Utility functions for removals from one federal state to another due to imitative
processes.



Figure 12: Rate of spontaneous migration in West Germany for the model of Weidlich

and Haag.

Figure 13: Utility functions of the federal states of West Germany for the model of Wei-

dlich and Haag. Note, that the utility of West Berlin (/) is extremely dependent on
changes of the political situation. For example, there is an remarkable increase of the
utility after the erection of the Berlin wall in the year 1961.



x 1 2 3 4 5 6 7 8 9 10 11

1 – 0.16 0.56 1.19 0.99 1.93 3.01 1.79 2.13 8.35 1.26
2 0.16 – 0.44 1.65 1.58 2.18 5.03 2.34 2.61 12.89 1.55
3 0.56 0.44 – 0.25 0.44 0.90 2.13 1.26 1.55 6.38 0.79
4 1.19 1.65 0.25 – 1.91 3.10 6.16 3.31 4.30 17.37 2.58
5 0.99 1.58 0.44 1.91 – 0.65 0.53 0.79 0.93 2.56 0.92
6 1.93 2.18 0.90 3.10 0.65 – 0.47 0.61 0.75 2.23 1.15
7 3.01 5.03 2.13 6.16 0.53 0.47 – 0.59 1.39 0.54 2.33
8 1.79 2.34 1.26 3.31 0.79 0.61 0.59 – 0.38 1.56 1.14
9 2.13 2.61 1.55 4.30 0.93 0.75 1.39 0.38 – 3.49 1.09
10 8.35 12.89 6.38 17.37 2.56 2.23 0.54 1.56 3.49 – 5.07
11 1.26 1.55 0.79 2.58 0.92 1.15 2.33 1.14 1.09 5.07 –

Table 2: Time independent effective distances De
∗(x

′, x) between the eleven federal states
of West Germany.


