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ABSTRACT

A universal dynamics of objects and their relations - a kind of "universal
chemistry”- is discussed which satisfies general principles of locality and rel-
ativity. Finsteins theory of gravitation and the gauge theory of elementary
particles are prototypes, but complex adaptive systems - anything that is
alive in the widest sense - fall under the same paradigma. Frustration and
gauge symmetry arise naturally in this context.

Besides a nondissipative deterministic dynamics, which is thought to op-
erate at a fundamental level, a Thermo-Dynamics in sense of Prigogine is
introduced by adding a diffusion process. It introduces irreversibility and
entropy production. It equilibrates the chaotic local modes of the time
development (only) and is designed to be undetectable under continued
observation with given finite measuring accuracy. Compositeness and the
development of structure can be described in this framework. The existence
of a critical equilibrium state may be postulated which is invariant under
the dynamics. But it is usually not reached in a finite time from a given
starting configuration, because local dynamics suffers from critical slowing
down, especially in the presence of frustration.

*Fxpanded version of a talk presented at Physikalisches Kolloquium of Hamburg University, April 14, 1994.



1 Complex adaptive systems

are all those which are alive in the widest sense. They include chemical systems, especially
autocatalytic ones, neural nets, living organisms, ecosystems, cognitive systems, organisations
of human society such as universities, economies, etc.

All these systems consist of a multitude of individual agents - molecules, neurons, plants or
animals, enterprises etc. Whatever they are, they organize into larger structures in a continuous
process of adaptation and competition.

Striking similarities in the behavior of very different such systems have often been observed.
Processes in the brain have been compared to the evolution of the species, for instance. There-
fore a universal theory is sought. It must necessarily be quite abstract, since one wants to
abstract from the concrete properties of special systems. Using such a universal theory as a
framework, one hopes to generalize the results of model studies by reformulating them in such
a way that only the notions available in the the general theory are used. This should then make
it possible to translate to other situations, from physical chemistry to economy etc.

Chemistry is the science of atoms and the structure of their compounds. We seek a universal
chemistry which deals with any kind of agents and their bonds.

The agents of a complex adaptive system evolve under the influence of the interaction with
other agents. This is not so fundamentally different from what happens in physical systems.
Therefore the general framework should accommodate the successful physical theories, in par-
ticular general relativity and the gauge theories of elementary particles. For simplicity only
situations with a discrete number of agents will be considered here. What we find could be
called a cross over between neural nets and lattice gauge theories. '

2 Paradigma

The fundamental principles are basically the same as in the prototypical physical theories. The

theory has therefore a geometric character. ?
1. Locality or Nahewirkungsprinzip: The relations imposed by fundamental laws are local.
The fundamental physical equations are valid everywhere but they relate only dynamical

variables at the same point of space and time, or in an infinitesimal neighbourhood of it.

2. Relativity or Naheinformationsprinzip: There exists in general no a priori possibility
to compare physical quantities of ohservers (or “agents”) at different positions in space
time.

To compare, a signal must be emitted. It will in general be influenced by the medium or
by intermediary stations through which it passes.

An agent manifests itself only through its (direct or indirect) relations with other agents.

3. emergence Out of the presence of local relations there arise collective phenomena of a
nonlocal character.

'General relativity can be considered as a gange theory, [42, 18] and there exist discretized versions of
it [44, 43]

2This reminds of Spinoza. His opus FEthica, ordine geometrica demonstrata influenced Lessing and Goethe.
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Figure 1: brick wall

The word “emergence” is not costumary in physics, but it makes sense. Fxamples are the
propagation of electromagnetic waves or the gravitational force exerted by the sun on the
earth.

Special methods have been developed for cases, where an immediate solution of the funda-
mental equations is not possible. Among them is Wilson’s renormalization group. It furnishes
a general method by which to derive effective theories which describe phenomena on coarser
and coarser length scales. [21]. In addition, multigrid and similar multiscale methods exist also
for the solution of partial differential equations [23] and for other problems including quantum
field theory [24].

The importance of a relativity principle may not be obvious in the context of complex
adaptive system. To make the point, let me formulate the

postmodern relativity principle: Reality is of no immediate importance for human action.
Only its perception is important, i.e. what is held to be reality

True or not, it is certain that this principle is operative in politics and elsewhere. This shows
that relativity principles are not irrelevant to our problem.

3 Structure: What is a thing? Why is it more than the
sum of its parts

Let us first consider structure in inanimate things. Consider a brick wall as an example (figure
1). Tt consists of objects, the bricks, which are its parts. The arrows in figure 1 indicate
neighbourship relations. These arrows determine the structure. They make the wall into more
than the sum of its bricks.

In mathematics, objects and arrows make a category. We consider things as categories in
this sense. The arrows determine their structure. The objects of a category can be categories
themselves. That is, they may have internal structure themselves. In this way things can be
made out of things. A tower may be built out of brick walls, for instance.

Without loss of generality, all objects may be regarded as categories, since every object may
be made into a trivial category. It has only one object and one arrow which represents the
identity of the object with itself.

In figure 1, only the arrows to nearest neighbour bricks were drawn. They may be thought
to represent the spatial translation which takes one brick into the other. We may also consider
arrows to next nearest neighbours etc. They are obtained by composition of arrows to nearest
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Figure 2: “couple”

neighbours, etc.

Categories

The axiomatic properties of a category are as follows:

A category K consists of a number of objects X,V ..., and of arrows f,g,... which point
from one object to another. * We write Obj(K) for the class of objects of a category K, and
Mor(Y, X)) or Mory (Y, X) for the set of its arrows from one object X to another object V. In
place of f € Mor(Y, X) the alternative notation f : X +— Y is used. There are arrows from
one object X to itself. Among them is 1x which expresses the relation of identity of the object
with itself

1. (composition of arrows:) If f: X — Y und ¢ : Y — 7 are arrows then the arrow
X =7
gorf: X

is defined. The composition is associative.

2. (identity) 1x is defined for all objects X, and 1y o =7 o Ix forall f: X — Y.

The symbol Y underneath o could be omitted, because an arrow f in a given category can
point to one object only. But the chosen notation will be convenient for our purpose, because
we shall have to consider several categories at the same time. Moreover we insist on writing ¢y
rather than id for the arrow which expresses identity.

An example of a category with two objects is shown in figure 2. Tt represents a couple. X
is married to Y and ¥V to X, and each of them is identical with itself.

Examples from mathematics

1. objects X: topological spaces

arrows f: X — Y: continuous maps

2. objects X: commutative groups

arrows [ : X — Y: homomorphisms of groups

In commutative groups, the group multiplication is usually written as +. Examples of commu-
tative groups are Z (integers), Z, (integers modulo p), Z x .. Z x ...Z,, ... 7

1 Pmn

3Tn German, the terminology Pfeil=arrow is standard. Tn english, the name morphism is more often used.
We stick to “arrow”



Application to complex adaptive systems

We formulate a calculus of agents and their relations in the language of categories.

objects = agents (1)

arrows = relations, connections or bonds between agents (2)

This provides an extremely general framework. Yet it will be seen to lead straight to gauge
theories - more precisely to a kind of crossing of neural nets with lattice gauge theory.

The arrows are directed. A mutual relation will have to be represented by a double arrow,
one arrow in one direction and one into the other.

The composition property of arrows is reasonable in the context of complex adaptive sys-
tems. Think of friends of a friend.

We shall impose additional structure later on. Certain arrows will be declared elementary.
All the others may be composed from them. In the brick wall, the arrows to nearest neighbours
would be the elementary ones. The identity arrow is also considered elementary.

4 Dynamics

Dynamics is time development. Agents (objects) will change under the influence of their rela-
tions. And the relations (arrows f: X — V) will change by the action of the agents concerned
(X and Y). We regard those relations f as elementary which can effect a change of agent V'
without time delay. This will be made more precise in a moment.

The time development of agents and their relations determines a map

t— [(7‘,

to a category which depends on time. Following a suggestion of Sorin Solomon’s T call this a
drama.

The agents will typically have some degree of permanence and a history. Therefore it is
reasonable to speak of a change of the state of an object with label or address =, or “at” = for
short. Sometimes = is called a node. Similarly elementary arrows will be labelled by labels b
called links. b= (y, z, 3) if the associated arrow points from an object at = to an ohject at y.

At a level of fundamental objects we may imagine a dynamics which is deterministic and
nondissipative. Let us assume that it is Hamiltonian, with continuous time t.

We will discuss later on how a stochastic and dissipative dynamics emerges from this at the
level of composite objects, i.e. objects with internal structure.

et M be the space of all possible states of the collection of objects and arrows, i.e. K; € M
for all times ¢. Call it phase space. Suppose that coordinates {£*} are chosen in some way to
identify points £ € M. According to the relativity principle, there are no preferred coordinates
on M, and the dynamical laws must be formulated so that they are valid for any choice of
coordinates. We demand, however, that each coordinate £” should refer to only one object or

arrow.

The Hamiltonian equations have the form (9, = 9/0¢&%)

Ce = Yo" 3

g
= {H.&} (4)
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with Hamiltonian H, symplectic matrix w and Poisson brackets {, }.

W = w

{F.G} = (9.F)w""(056), (5)

B

Erxample: Tn a mechanical system with a 2-dimensional phase space, ' = p,£? = ¢, w
—w?' and (3) are the usual Hamilton equations of motion.

We do not insist that the matrix w has an inverse. If it has not, we speak of a degeneracy.
There are very interesting models which are degenerate in this sense. Degeneracies lead to
constraints, as we shall see.

Maxwell’s electrodynamics on a lattice, formulated in terms of electric and magnetic fields,
are an example, and there are many similar ones. The symplectic matrix is given by the
incidence matrix of a simplicial or cell complex in these examples, and the degeneracy comes
from the fact that the boundary operator has square 9 = 0 (see appendix B). Lattice gauge
theories in a first order formalism are also degenerate in this sense. Applications of lattice gases
to model predator prey systems have been proposed [46]

w*® may be &-dependent. Tn this case it must satisfy conditions which ensure that the
Poisson brackets satisfy the Jacobi identity, and that a volume form v on M exists which is
invariant under the Hamiltonian time development

HUFGHKY+{{K, F},G}y +{{G,K},FF} = 0, (6)
/d?){RH} =0 (7)

for every F. Tf (w"?) has an inverse (w,s) then the condition is sufficient that the 2-form
0 = w,5d”dEP s closed [32].

The Poisson bracket defines a derivation of the algebra of functions on M,
{F.GK}={F.G}K + G{F,K} . (8)

If a deterministic dynamics is given, then the initial state & of the system at some time
t = 0 determines the state & for all later times t.

NB: The initial state is considered known. It is the aim of the formulation of a dynamical
law to determine the future state from a known initial state. How to know it is another question.

In a wuniversal dynamics one seeks to extract as much information as possible from the
known initial state. The Hamiltonian (or the principles from which it is determined) should be
as universal as possible, while different model situations are distinguished by initial states of

different kinds.

For instance, the Maxwell equation
VE=4zp (9)

is a condition on the possible initial states. The charge density p is proportional to the charges
of the particles which serve as coupling constants in the Hamiltonian. Therefore the initial
state contains information on them.

It is characteristic of gauge theories [12] that the initial state must satisfy constraints which
fix conserved local quantities.

b = 0 (10)
{H,®;} = 0. (11)

It is standard to call also ®; a constraint. We distinguish
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1. Degeneracy constraints: They satisfy
{0.£"1 =0
for all variables £~

2. Generators of infinitesimal gauge transformations £ — ¢ + 6&,
06" ={®, ¢} (12)

It follows from the definition (12) that infinitesimal gauge transformations leave the Hamiltonian
invariant,

% (€ + €88)|emo = —{H,®} =0 . (13)

Of course, the values of all conserved quantities are determined by the initial conditions. If the
Hamiltonian is not explicitly time dependent, then energy is conserved. Therefore the motion
is constraint to the energy surface My where

H=1F.

In general relativistic theories, K/ = () is often enforced by other constraints.

Locality

We exhibit additional structure in categories which describe complex systems. Some of the
arrows will be declared elementary. They represent direct relations. Other arrows which
represent indirect relations can be composed from them.

This substitutes for locality properties in physics. Fundamental physical laws relate only
physical quantities in an infinitesimal neighbourhood of the same point in space and time. In
discretized models such as lattice gauge theory, this is embodied through nearest neighbour
interactions.

In complex adaptive systems the situation can be more complicated. The local topology
can be complicated. And at a high level, where agents have much internal structure, there can
be special agents which are connected to all or a large fraction of the other agents. This is
called broadcasting. Media (radio, TV, newspapers) are examples.

But similar situations arise also in physics. Newtons law of gravitation involves forces at
a distance. Yet Newtons law can be derived (modulo very small corrections) from Finsteins
general relativity which obeys very strong principles of locality. Spacetime becomes a medium
here.

It has been noted that seemingly purposeful activity of living organisms need not be based
on an organizing intelligence. The fundamental idea is that the agents (e.g. legs of an insect)
influence each other only locally, from neighbour to neighbour, and this results in global be-
haviour which is not governed by a central intelligence. Studies of insects showed for some
animals that their legs exchange neuronal signals, and this results in coordinated walking,
without need for an insect brain which coordinates the activity [48]

Ultimately we want to understand all kinds of organized behavior and self organization as
a consequence of local interactions at some fundamental enough level. This is what the word
emergence means. The examples show that often seemingly high level behavior can readily be
understood as a consequence of local interactions.
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This principle is being discussed in many disciplines. Another example is the detection
of saliency in pictures by the visual system. Ullmann and Shashua presented a model which
explains how this task could be performed locally in low level neurons in the visual cortex [13].
The salient features of a picture are characterized by relatively long straight lines. Thinking
of the picture as made of directed line elements (which are recorded by Hubel-Wiesel neurons
[14]), the activity of a neuron which represents such a a line element gets enhanced in each step
of an iterative process if it has neighbours of nearly the same direction. The iteration steps can
be regarded as local dynamics in discrete time.

et us return to the formalism of categories. The formulation of a dynamics forces us to
consider families of categories made out of objects and arrows which are taken from certain
sets (state spaces). To prepare the ground for a local dynamics we need to specify the locality
properties of the composition law of arrows first.

Postulate 1 (Locality of the composition law) f o9 is defined iof f,q, X are elements of at
least one cateqory K in the family. It depends on f, g, X bul not on K.

The above mentioned condition of locality on the dynamics will be satisfied if the Hamiltonian
and the symplectic form have the following properties.

The state of the object at 2 will be determined by real variables £77. and the state of the
arrow at link b by real variables ¢ Collectively they are denoted ¢ = (£), o = (z,m) resp.

(b,n).

Postulate 2 (First order formalism)
H(E) =Y Hy(€), . (14)

and the following restrictions are imposed on the &-dependence of Hy, and on the symplectic
matriz w™P.

1. Hy depends only on the state of the arrow at link b and on the state of the objects which
it links;

2. w*P depends only on the state of those objects and arrows to which o, 3 refer; in case of
an arrow it may also depend on the object to which this arrow points. w™® = 0 unless o, 3
refer to the same object or arrow, or to an arrow and the object to which it poinis.

tx may occur among the arrows in the sum (14). In this case we may write H, in place of H,.
H, depends only on the state of object X at .

Apart from locality, the form of H embodies the assumption that the “force” on an object is
the sum of forces which are exerted by objects with which it has direct relations. That is, there
are no true “multi-object-forces”. This postulate refers only to the fundamental deterministic
dynamics. The effective stochastic and dissipative dynamics at the level of composite objects
with internal structure will not inherit this property.

Let O be some subset of all objects, and let K(O) be the category which is generated
by these objects and the elementary relations between them. Starting from the Hamiltonian
form of the equations of motion, and from the locality properties of the Hamiltonian, the time
development of K(O) under the influence of its environment can bhe analysed. This is done
in Appendix 1. The environment consists of objects not in O, together with their elementary
relations.



Kinematics

Besides the dynamical laws, there can also be kinematical rules. They will determine changes
of status of arrows from composite to elementary and vice versa. In physical systems this may
be determined by neighbourhood of objects in space.

5 Communication Networks, Consensus, (Gauge invari-
ance

Let us return to mathematics for a moment. Given categories K and K’, a functor F'is a map
K~ K’

which maps objects into objects and arrows into arrows in such a way that the composition
rules for arrows are respected

Flgo f) = Flg) o F(f), (15)
Flix) = trx) - (16)

There are also contravariant functors where the order is reversed, but we will not need them.

Example from mathematics

Algebraic topology exhibits a functor from the category of topological spaces and continuous
maps to the category of commutative groups and homomorphisms [50]

This shows that functors can exhibit common structure of completely different categories.
This is exactly what we want.

Communication networks

We say a category K’ is a representation of K if there exists a functor K — K.

Theorem 3 (Representation of a category as a communication network) Fvery category K
permits a faithful representation with the following properties

To every object X there exists an input space Ax and an oulput space Qx. The input space
contains a distinguished element O (“empty input”). Arrows f € Mor(Y,X),g € Mor(7,Y)
and objects X act as maps

X : /4)( — (2)(7 (]7)
Lx Q)( — /4)( (]8
f:Qx = Ay (19)
with the properties
Xix =id: Qx —Qx . ixX =id: Ax — Ay, (20)
gof = gVf:Qxm Az (21)



It should be noted that /x does not act as the identity map in general. In the context of
cognition, tx may be associated with consciousness. It makes an agent aware of his actions
(output).

The proof of the theorem will be given in Appendix A.

et us note that this theorem refers to a single category, and the additional structure brought
in by locality is not considered. In fact, the construction of the communication network uses
global properties of the category.

When the locality postulates are imposed, a composite arrow f which is incident on ¥ may
have an implicit dependence on Y. This occurs when the breakdown of f into elementary
arrows contains a segment f, 0 foi1- One may extract this Y dependence and use it to define

a composition law for inputs, under certain extra conditions.

Curvature = Field Strength = Frustration

=

X}' {Z

o

This concept is central in gauge theories of all kinds. Tt is called curvature in general relativity,
field strength in gauge theories of elementary particles, and frustration in spin glasses. But it
is all the same and can be formulated in the general context of categories.

Relativity

In general relativity there is a space time manifold M with points x. Particles travel along
worldlines on M. These world lines may be parametrized by eigentime 7. The eigentime
is shown by an ideal clock which the particle carries along. The worldline penetrates each
spacelike hypersurface ¥ (“space”) only once.

The 4-velocity u € T, M of the particle at = is defined as the tangent vectors to its worldline,
parametrized by eigentime. T, M is the linear space spanned by all tangent vectors to curves
through .

There exists a basic principle of locality and relativity which generalizes the famous Na-
hewirkungsprinzip:

Naheinformationsprinzip: [18]

There is no a priori possibility of comparing vectors w € T, M and v € TyM al distinct points
x #y € M. To compare, u must be parallel transported along a path C from x to y, for
instance by emission of a signal which travels along C', i.e. by a process of communication

Lo

e
~__ YV
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The result of the parallel transport will in general depend on the path ' and on the gravi-
tational fields encountered at intermediate stations z on (.

The path ' may be considered composed from infinitesimal pieces ' = b, o...0 b, and the
parallel transporter

U(C): T,M T, M (22)

may be regarded as a composite arrow
UC)=U(b,)o...oU(b) (23)

which is made from elementary arrows attached to links ;. After a choice of coordinates on
M and a of a corresponding holonomic basis in T, M,

Ub) =1 — Ty (x)82", . (24)

with matrix I',(2) furnished by the connection coefficients (Christoffel symbols).

Curvature (or frustration) is present if the parallel transporters have a nontrivial path-
dependence for given initial and final points of the path .

In general relativity, there is a continuum of points . But there exist discretized versions
of it with a countable number of points = and of links b from which paths can be composed
[43, 44].

Generalization to the general situation is possible because arrows in a category may be
composed. The Naheinformationsprinzip has its counterpart in the theory of complex adaptive
systems:

Postulate 4 (Relativity principle) There is no a priori way of comparing the state of two
different agents. Any one of them manifests itself only through ils communication with the
others

In our framework, this communication is described by arrows which may be composed.

The relativity aspect has been stressed by J. Holland [31] His Darwin relativity principle
asserts the following. Fach agent attempts all the time to adapt to all the others.

There is no absolute measure of fitness which would be maximized by an evolutionary
process, but only a fitness relative to an environment. One speaks therefore of coevolution.

In computer simulations, adherence to strict standards of data encapsulation in object
oriented programming [47] offers some protection against inadvertent violation of the relativity
principle.

Frustration can occur in categories. In the following pictorial example it occurs, if the two
composite arrows from X to 7 are different.

=

X}' {Z
I Yeu

o

Definition 5 (Unfrustrated category) A category is unfrustrated if there never exist two dif-
ferent arrows from one given object X to another one, Y. In particular there is only one arrow

tx from X to X.
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When elementary arrows are singled out in the given category K, a path ' from = to y is
specified by a sequence of links by...b, again, with by = (24, 25 1,01), ¥, =y, o0 = . The
elementary arrows attached to them may be composed. In general, the resulting arrow may
depend on the path (. The category is unfrustrated if it does not.

If a category is unfrustrated, synchronization is possible which produces consensus about
when two agents are in the same state.

With frustration, one agents owl is the other’s nightingale. Generally speaking, frustration
is the simultaneous presence of relations with contradictory tendencies. This has consequences
similar to what is familiar in spin glasses. Here is a description of a “model economy” to
illustrate the point.

Example 6 (frustrated economy) The example is based on the model assumption that it is
man’s fundamental need to feel superior to his neighbours. If so, the absolute level of material
welfare is not essential. What counts in an economy is that every consumer possesses more than
his neighbours do. Feonomy appears then as an iterative procedure which aims at satisfying this
condition as well as possible.

This is a frustrated system in the sense that the dynamics is governed by relations which are
contradictory in their tendencies. As a result, there is no well-defined global optimum which
the iteration would approach. (Equality would satisfy nobodies needs...). If one were to express
by a cost functional the degree to which all the agents’ needs are satisfied, its minima would
be very sensitive to changes in neighbourhood relations and to the precise form of the cost
functional ( e.g. by a change of perception by the agents of their situation as could occur under
the influence of the media).

Taking account of the possible back reaction of the economic development on these pa-
rameters, an autopoietic picture [10, 11] of fluctuations which generate fluctuations becomes
plausible.

Traditional economic theory is badly equipped to deal with situations as in the example. It
has been criticized for similar reasons by Arthur [28].

The curvature- or field strength tensor

describes the path dependence locally. Consider a closed path (' from = to x made of four links
by, ...bs. In an unfrustrated category, the arrow f attached to (' should be 1y, where X is the
object at x. Therefore

Xf=id:Qx s Qy

in the language of communication networks. The frustration is measured locally by how much
this condition is violated.

In general relativity and standard gauge theories, the parallel transporters U(C) = X f
are linear maps. In this case one may consider the difference X f — id. This defines the field
strength tensor.

Suppose that coordinates {z#} have been introduced on the space of points x such that the
links b1, by are paths along coordinate lines in yu, v direction respectively, and similarly for b3, b,
(see figure 3). Then one defines the components F,, of the field strength tensor by

UC)=1—F,(x)ox"6x” (no sum) (25)

In the general nonlinear case one has only the composite arrows along closed curves as a
substitute for 1 — F,, 0x"dx".
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Figure 3: The field strength tensor

Determination of the gauge group from the initial conditions

We wish to explain that there will be a gauge group which can be determined from the initial
state of the system at time ¢t = 0, i.e. by the category Ky = K;—g. We emphasized that
this initial state is to be considered as known. We will always think of the category as a
communications network.

We will begin by discussing the issue for lattice gauge theory [22, 26, 25]. Then we point
out that the construction generalizes readily to the general setup.

There are two ways of determining the gauge group from the initial conditions: as a holon-
omy group, and as the group of those invertible transformations which leave all gauge invariant
observables invariant. Both are related because the “gauge invariant observables” are those

which are invariant under parallel transport along all closed curves. Let us explain this in more
detail

Holonomy group

Typically, lattice gauge theories live on hypercubic lattices A = (aZ?) of lattice spacing a
and dimension d. We are here interested in the Hamiltonian formulation where time remains
continuous.

The sites of the lattice are denoted by = and the links from some site = to its nearest
neighbour y by b = (y, ). Associated with every site = is a complex vector space V... All these
vector spaces are isomorphic, but they cannot be identified in a natural way because of the
Naheinformationsprinzip.

There may be complex matter fields W(2) € V.. In addition, a parallel transporter is
associated with every link b = (y, ). Tt is a invertible linear map

Ub): v, —V,. (26)

These paralleltransporters are the lattice gauge fields. They substitute for vector potentials
A = A,dx* in the continuum. The link —b = (2, y) carries U(—b) = U(b) .

This fits in the general framework as follows: Let X be the object at #. We denote the
input space without the distinguished element § by A%. Then

X0 = W(z), X =id on A%, (28)

and the elementary arrow attached to link b is U(b). The composition of arrows is by compo-
sition of maps.
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The gauge group is isomorphic to G* for some compact group G which can act linearly on
V... Tt consists of a collection of linear maps

glz): Vo= V.o (2 €A

In the generic case, i.e. except for gauge field configurations which occur with probability zero,
the gauge group is characterized by the condition

g(r) € H() .

where H(x) is the group of all parallel transporters U(C') along closed paths C' from 2 to a. It
is called the holonomy group. Groups H(x) for different x are isomorphic.

This generalizes to the general situation as follows. An arrow f € Mor(Y, X) is called
invertible if there exists an arrow f~' € Mor(X,Y) such that

foft=n and flof=uy.

Let X be the object at 2. The holonomy semigroup at x is Mor(X, X). This is a semigroup
because arrows can be composed. If we want a group, attention may be restricted to invertible
arrows in Mor(X, X). The gauge (semi)group is { Mor(X, X)} xconj(ry) - Under extra condi-
tions, the holonomy groups are isomorphic for different =. In particular, this is true if all arrows
are invertible and if the category is connected in the sense that Mor(X,Y) is never empty.

Invariants, coupling constants

Basically, invariants are quantities associated with objects X which are invariant under parallel
transport f along closed curves, or under

f=X[:0% — Qx,

for arbitrary f € Mor(X, X). These invariants are determined by functors which map the
category into an unfrustrated category.

In particular, coupling constants which determine the Hamiltonian are invariants of this
kind. They should be real valued. In this way the possible dynamics can be classified by the
functorial maps of the initial category Ky at time 0 (or of representations of it) into unfrustrated
categories whose objects are subsets of the reals.

The gauge (semi)group consists of all collections {g(X)}xeoni(r,) of maps g(z) : Qx — Qx
which leave all these invariants invariant.

The invariant quantities can be constructed out of vectors v € Qx, or of arrows f €
Mor(X, X). Details are given in Appendix C and illustrated on the example of lattice gauge
theory.

In general relativity, the metric tensor is invariant under parallel transport. This is the
basic invariant. Tt expresses the existence of ideal clocks whose speed does not depend on their
previous history. They can be synchronized. In other words, there is consensus about the
meaning of (eigen)time.

Similarly, an economy cannot exist unless consensus can be achieved about the result of
arithmetic operations on integer numbers by a process of synchronization (schools).

Generally speaking, invariants are those quantities about which a consensus can be achieved
among all agents of the same type by a consistent process of synchronization.

Apart from very special examples (topological field theories) [27] without a “true” dynamics,
it does not seem to be possible to formulate dynamical laws unless there exists at least one
nontrivial invariant.
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6 Life processes as stabilized critical fluctuations

This year Boltzmann’s 150" hirthday is celebrated. On his tombstone, his formula S = kIn W
for the entropy is engraved. One of his major achievements was the H-theorem which asserts
that entropy increases. The question poses itself: Do we live in spite of this, or just becausel’
It seems that both is the case.

In spite of

Experience with Monte Carlo simulations of lattice field theories shows the following. Let 7 be
the number of time steps until a new, statistically independent state of the system is reached.
If the dynamics is local, and if the system is critical then 7 diverges in the limit of infinite
volume (infinitely many agents).

In this sense, equilibrium is never reached. Frustration can enhance this effect. For instance,
spin glasses are extremely hard to equilibrate.

Whether the system is critical depends on some conditions on the parameters which de-
termine the equilibrium state (coupling constants). There exist examples where systems are
always critical, or at least almost. Pure gauge theories in 4 dimensions are like that. This is P.
Bak’s “self organized criticality” [29].

Wilsons renormalization group furnishes criteria when this happens.

At a critical point there are critical fluctuations of arbitrary spatial extension. Typically
they can also have arbitrary life time if the dynamics is local.

A well known example is the critical point (P.,T.) of a real gas. The critical fluctuations of
the gases density give rise to critical opalescence.

In a system with self interactions, fluctuations can generate fluctuations.

The work reported here grew out of attempts to gain a deeper understanding of how to fight
critical slowing down in computer simulations of lattice gauge theory [16]. If the configurations
show too much “will to live” and resistance against equilibration, this is the death of the Monte

Carlo Method.

Just because: Deterministic chaos and self organization

Self organisation is the formation of complex structures out of simpler structures step by step
in such a way, that the persistence of these structures - either static or by reproduction - is
favored.

It is claimed [7] that chaos in nature is not only everywhere but is actually indispensable
for the emergence of structure. A possible explanation could go like this

chaos — chance — entropy production — stabilization of composite objects

If entropy is produced when two objects form a composite object, then the process is irreversible
and redissociation into the original two objects is impossible or at least suppressed.

This mechanism is familiar from physical chemistry; one would like to carry it over to a
universal theory.

Actually it is very difficult to make this idea precise. A proposal how to do it will be
submitted in what follows.

l.et us begin by recalling that chaotic behavior of a dynamical system means sensitive
dependence on initial conditions, see figure 4. A small change of the initial state ¢, may lead
to a large deviation after sufficiently long time. Typically it grows exponentially with time.
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Figure 4: Chaos is sensitive dependence on initial conditions

Figure 5: Sinai-Billard

Chaos in this sense combined with the limitations of a finite measuring accuracy for the

initial state leads to unpredictability of the distant future. Examples in mechanics are well

known

1.

2.

The 3-body problem was already studied by Poincaré [36, 33]

Scattering of atoms in a gas. According to Boltzmann, this leads to entropy production.
In a simplified billiard model, one considers scattering off fixed solid disks in a plane .
A small initial uncertainty in the impact parameter leads to a small uncertainty in the
scattering angle. This gets converted into uncertainty of the position which grows with
time. This leads to an uncertainty of the impact parameter for the next scattering, and so
on. The uncertainty grows exponentially with the number of scatterings (figure 5). Sinai
showed that this leads to a finite Kolmogorov entropy, thereby confirming Boltzmann’s
picture [35]. The diffusion process associated with this scattering has also been studied

numerically [49, 38, 39].

Computer simulations indicate that the motion of the earths axis of rotation were chaotic
if it were not stabilized by the moon. This would have affected the constancy of the
change of seasons on earth and therefore the evolution of life [40]

We wish to consider unpredictable events as random. This leads to entropy according to

Boltzmann’s formula, S = kIn(no. possibilities).

It is proposed to implement this idea as follows. Chance is introduced by adding an un-

detectable diffusion process to the Hamiltonian dynamics which affects only the stochastic

components of the motion and tends to equilibrate them.
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The diffusion may be thought of as a Brownian random motion which is superimposed on
the Hamiltonian time development. This leads to a Langevin equation which is equivalent to a
Fokker Planck equation for the distribution function p(&,¢) in phase space.

0 D
EH{H?/J}*EA”/J:O- (29)

This involves a positive semidefinite second order differential operator — DAH which is deter-
mined by the Hamiltonian dynamics and a metric - see below.
This is in the spirit of Prigogine’s proposals concerning the origin of irreversibility [2].
There are two related problems which need to be solved in order to specify the diffusion
process.

1. The picture of chaotic behavior shown in figure 4 presupposes definition of a distance.
Because of covariance under canonical transformations, there is no preferred choice of
coordinates and no natural metric on phase space which would define such a distance.

2. One needs to separate chaotic and nonchaotic components of the deviation ( € T M from
a given trajectory.

The diffusion process is supposed to be undetectable. This demand refers to a detector with
a finite measuring accuracy. We are interested in the time development of subsystems under
the influence of the environment. We think of this influence as a continuing measuring process
such that the finite measuring accuracy is operational at all times. In other words, information
which has once become undetectable does not reemerge again later on.

The metric on phase space which we will need embodies additional information beyond the
Hamiltonian dynamics. Tt is interpreted as the correlation matrix for the measuring accuracies,
() =< AEAEL >,

It is assumed that this metricis consistent with the symplectic structure. If so, it can be used
to separate the modes in the Jacobi equation for the deviation in a way which is stable under
small perturbations of the dynamics. This separation singles out expanding and contracting
directions in Te M. In a Hamiltonian dynamics, expanding and contracting directions always
come in pairs. The diffusion process involves random forces which have components in the
expanding directions and in the dual contracting directions, but not in the others.

et us define a microscopic entropy

St = /M dv p(€,1) In p(€,1). (30)

This quantity would be constant under a purely Hamiltonian time development [2]. But upon
adding the diffusion process, this changes. The Fokker Planck equation of motion for the
distribution function p implies

Theorem 7 (Second law of Thermo-Dynamics)

1. The entropie cannot decrease with time,

d

—5(t) > 0. 31

% 1) > (31)

2. The entropy production %S can only vanish if the distribution function has vanishing
directional derivatives (“0,p whenever ( € TeMp is expanding or contracting. This is

supposed to hold true for almost all £.

The details will be given in the next section. Te Mg consists of vectors which are tangent to
the energy surface H = F.
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Structure is in the eye of the beholder

According to our discussion of “things”, structure is the formation of composite objects, of
composite objects out of composite objects etc. But which collections of objects should be
considered as composite objectsl’

A definition of a “virtual composite object” will be proposed which specifies for every
microscopic state £ € M which subcategories of the category K, (of fundamental objects and
their relations) can be regarded as composite objects.(They can overlap.) This defines the
probability for the existence of some virtual composite object, given the distribution function
p-

The definition depends not only on the Hamiltonian dynamics, but also on the metric. In
other words, “structure is in the eye of the beholder”. Tt depends on measuring accuracies.

In a gas, entropy depends on the number of degrees of freedom. In our situation we can count
the number d(¢) of expanding directions in Te M. We call d(¢&) the dimension of instability.

Given the category K which is determined by a point £ € M in phase space, let O C Obj(K)
be a subset of its objects, and consider the category K(O) which is generated by these objects
and the elementary relations among them.

The state of the objects and elementary relations in K(O) is denoted by £o. All other
state variables €7 which describe the environment of K(Q) are considered fixed. Suppose that
(O = UO; is an arbitrary partition of O in disjoint nonempty subsets O,. The state variables
are classified accordingly. &o = {&o,,&s0.}. Herein, {£50,} are variables which determine the
state of arrows in K(O) which connect objects in different subsets O;. The categories K(O)
and K(0O;) will have dimensions of instability d({n) and d(&p,), respectively.

Definition 8 (virtual composite object) K(O) is a virtual composite object if the following
strict inequality on dimensions of instability is fulfilled for every nontrivial partition O = O;

d(&o) > Z d(&o,)

In words: The virtual composite object exists if it can be stabilized by entropy production. Its
microscopic state is £o, and its time development is given by eq.(131) of Appendix D.

Let us note that K(O) cannot exist as a virtual composite object if it is not connected as
a category, i.e. if it could be decomposed into two subcategories with no elementary relations
between.

Stability properties of the dimension of instability under perturbations are discussed in the
next section.

7 Construction of the diffusion process
The evolution in time of a deviation
0& =e((t) , ((t) €Ty, M
along a trajectory ¢ > ¢ is described by the Jacobi-Equation
d
=) = N (32)
N%(t) = 0y (wdsH) . (33)
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The solution furnishes a map from one space to another
G0 T M s Ty M. (31)

It makes no sense to speak of eigenvalues of such a map in general.

For this reason, the standard definitions of Tiapunov exponents [34] assume a critical point
or periodic motion so that & = &. In this case, ¢}, is a symplectic map of T, M whose
eigenvalues can be classified in the standard fashion. Those eigenvalues which do not lie on the
unit circle come in guadruples X\, A\, A™". A7, or in pairs, if X is real.

If we want to formulate a local thermo-dynamic equation of motion, and if we insist on
our intention of accepting only the unstable (chaotic) modes of the motion as a source of
stochasticity, then we need a local stability criterion. It should not involve prevoyance of the
distant future, either.

Krein’s classic stability theory relies essentially on the behaviour of the eigenvalues of a
symplectic matrix under small perturbations. In particular, an eigenvalue # 1 can leave the
unit circle only if it collides with another eigenvalue. To preserve this stability property, we
want to interpret the map (34) as a symplectic map. This is only possible if we can identify
the two spaces in a natural way.

Such an identification is possible with the help of a metric connection on M which is
compatible with the symplectic structure.

With its help, vectors ( € T, M can be parallel transported along the trajectory back into
Te,. The compatibility of the metric connection with the symplectic structure will ensure that
the resulting map

05;0 : Tfo = Tfo' (35)
is symplectic.

A metric connection is given by

1. a Riemannian metric on M, i.e. by a (positive) scalar product <, >¢ in T M,
<o >e=Cgop(En” - (36)

2. a connection which is compatible with the metric. In a coordinate basis it is given
by connection coefficients %5 (£) Compatibility with the metric means that the scalar
product is invariant under parallel transport, or, equivalently, that the metric tensor is
covariantly constant, g”ﬁW = 0.

The inverse metric tensor is denoted by ¢®?. The connection may have a nonvanishing tor-
sion 5% () = ] (T’”ﬁw(f) — T’”W(f)). We use the customary semicolon notation for covariant
derivatives, e.g.
w”ﬁw = (()Wufyﬁ + T’”Mww + T’ﬁ{gww”{s . (37)
and similarly for the inverse metric tensor.
It suffices to consider infinitesimal £. The time derivative of ¢, equals the covariant time
derivative of ¢}, and is described by the covariant Jacobi matrix K.

S0 = K0 (3)

Ko(&) = —d,(w"9sH) — P OsHT ;5 . (39)

K describes the time evolution of a deviation in a comoving basis. * Tt transforms covariantly
under coordinate transformations and also under transition to an anholonomic basis.

4By comoving we mean autoparallel along the trajectory
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Definition 9 Compatibility of the symplectic structure with a metric connection
holds true if the volume form in local coordinates has the form dv = /g1 d&Y and if

e € o € o & o Se fe, o
w ;ﬁwm —w” ;ﬁwﬁ = 2{S5 g5 Fuohr - 8 350 W — S s w . (40)
A metric is called compatible with the symplectic structure if there exists a corresponding metric
connection which is.

et us note that the condition is satisfied if the symplectic matrix is covariantly constant and
the torsion vanishes. Using (40), one verifies that the covariant Jacobi matrix is an element of
a symplectic Lie algebra,

Ko™ (&) + K™ (§) = 0. (41)

Therefore, the time evolution operator ¢7 in a comoving basis is described by a symplectic
matrix as desired. The covariant Jacobi matrix depends on the connection. But it will turn
out that the diffusion process which we will construct depends only on the metric, at least if
K is diagonalizable.

Example 10 Fuclidean phase space M = R*" = {(p,q)} with the usual Fuclidean metric and
with Poisson brackets {p;,q'} = &!.

In a Hamiltonian dynamics with an invertible symplectic matrix one can always choose local
coordinates as in the example because of Darboux theorem. This shows that the condition can
always be fulfilled locally. This is enough to define the diffusion process

Given the symplectic structure, there is in general much freedom to choose a metric. In the
example, the freedom of transformations p — Ap, ¢ — A7 remains, for instance. In the reverse
direction it is different [37]. This suggests to consider the metric as the basic quantity. If we
regard the detectors as part of the system, then the determination of the metric from initial
conditions will have to invoke the same principles as in the case of the Hamiltonian.

It follows from the symplecticity of ¢} occur only in singlets, pairs and quadruples as follows

[32]
1. singlet 0;
2. pairs +A (A real );
3. pairs A, A (X imaginary ):
4. quadruples £X, £X (X complex ).

FEigenvectors to eigenvalues A with A £ 0 will be called hyperbolic . They are expanding if
RA > 0 and contracting if RA < 0; Figenvectors with RA = 0, A # 0 are called elliptic. (If K
is not diagonalizable, there can also be parabolic vectors. They are associated with a spectral
value 0 of K. Compare Appendix D)

For hyperbolic eigenvectors with I'mX # 0 the expansion or contraction is associated with
a rotation. We may imagine that the time evolution is discretized in such a way that expan-
sion/contraction is alternating with rotations. We want to associate a diffusion process only
with the expansion and contraction. As a simple illustration, a two dimensional example is
discussed in Appendix D. In contrast with this example we shall wish to constrain the diffusion
process to the energy surface, however.
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Definition 11 (Modulus of the covariant Jacobi matrix, diffusion operator) Suppose a Hamil-
tonian dynamics is specified together with a metric connection on M which is compatible with
the symplectic structure, with metric tensor D™"q,5(€). * We denote the energy surface H = F
by Mg. ® Let Ig(&) : TeM — T Mg the projector onto vectors which are tangential to the
energy plane, and let T1;(€) the projectors which project onto real linear combinations of eigen-
vectors of the covariant Jacobi matriz K(&) to eigenvalues (A, ) with RX # 0. We define th
modulus of the Jacobi matrix

[K(O)175 = D IRX| (€)% (42)

3

and its restriction to directions tangential to the energy surface
|KFJ| :ﬂﬁ|f(|ﬂﬁ . (43)

The diffusion operator associated with H s the following positive semidefinite differential
operator of 2" order on M, multiplied with D).

] 7 (83
AT = %aa\/m Kil|"3970, . (44)

Arbitrary vectors ( € Te M are called hyperbolic, if ( € range |K|.

Proposition 12 (Independence of the diffusion process of the choice of connection) If K is
diagonalizable, then |K|, and therefore also |Kg| and A" depend on the metric, which is as-
sumed compatible with the symplectic structure, butl they are independent of the choice of the
metric connection.

Proo¥F: Consider the matrix ¢}, of the time evolution from £ = 0 to f. lLet the comoving
basis be fixed at t = 0, we choose it orthonormal. When the metric connection is changed, but
not the metric, then the new comoving frame at & is obtained from the old one by a rotation

V, = V' . Therefore
Pio > Vi Olo-
Consequently,
|¢:0|2 = (7)) 0
remains invariant. For small ¢ we have ¢7, = 1+t K (&y). Let K(&) = 3 A1, In an orthonormal
basis, the projection matrices Il; are hermitian. Therefore

07o|* =D ML
It follows that

1 /1 1 >
= (560l + 516l 1) = IKI(&) +0(1) (15)

Therefore | K| is also invariant. q.e.d.

In the parabolic case, K is triangular. This case was excluded by the assumption of diago-
nalizability of K. We remark that the choice of eq.(45) as the general definition of |K| would
lead to a diffusion process also for parabolic modes. We take the attitude that diffusion pro-
cesses for parabolic modes belong to the realm of quantum mechanics, since they are associated
with measuring uncertainties with < Ap;A¢' ># 0.

"We extract a factor D in order to be able to normalize the metric tensor g, by convention.
6Tn general relativistic theories F = 0 is often enforced by other constraints
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Corollary 13 |K|(&) maps the part Te Mg of Te M which is tangential to the energy surface,
to itself.

PROOF: Because of energy conservation, the time evolution of a deviation maps vectors which
are tangential to the energy surface Mg into vectors with the same property. The same is true
of the parallel transport of tangent vectors if we use the Riemannian connection on Mg which
is furnished by the restriction of the metric to Mpg. In this way, |K|({y) is defined as a map of
Te, My to itself. g.e.d.

With these definitions, the Fokker Planck equation of motion (29) for the distribution
function can now be written down. The decisive difference compared to familiar versions of a
Fokker Planck equation as used e.g. in [3] consists in the fact that only the chaotic modes are
sources of a diffusion process. If there are only stable (elliptic) modes, then the eigenvalues of
the covariant Jacobi matrix are imaginary and A" = 0.

et us turn to a discussion of stability properties of the dimension of instability. By con-
struction, K(£) is a symplectic matrix. If £ changes, or if a perturbation is added, then a new
expanding direction, and therefore a rise of the dimension of instability can only arise out of
an eigenvalue 0 or if two eigenvalues collide on the circle. (According to Krein’s theory they
must in addition have “opposite sign”, cp. [32])

This consideration implies in particular stability properties against infinitesimal changes of
the Riemannian metric.
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Appendix A: Proof of the representation theorem 3 for
categories

Given a category K, we write Mor(Y, ) for the set of all its arrows to ¥ etc. We define
In(Y)= Mor(Y,x) , Out(Y)= Mor(*,Y) .

We write X = a(f) if f € Mor(Y,X) C In(Y), and correspondingly 7 = w(f) if f €
Mor(Z,Y) C Out(Y). The output space will he defined as a subspace Qy of Qu". Q!

consists of maps

¢ : Outy — Mor(x*, %)
with the property ((f) € Mor(w(f),*).

An object Y will act as a map

Y :In(Y)— Qy.
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according to

Vi) =gofl (g9€Out(Y)).

The output space is defined as the image of YV, and the input space as space of equivalence
classes (if necessary) of elements of Ing(Y), which ¥ maps into the same ¢ € Q"

Oy = IMY oy, (46)
Ay = In(Y)/KERY . (47)

Y is invertible as a map from Ay to Qy. Tts inverse is 1y. The empty input ) € Ay is defined
as the equivalence class of 1y € Mor(Y,Y) C In(Y).

Anarrow f € Mor(Y, X)is defined as a map 0 x — Ay by use use of the map 1x : Qy — Ay,
as follows.

Lx (48)

flg) = g forge Mor(X, %) . (49)

The last formula defines f as a map from In(X) to In(Y). This map passes to equivalence
classes (47) thereby defining a map Ax — Ay. The composition rule (21)holds. q.e.d.

8 Appendix B: Lattice models

Geometry of a hypercubic lattice

We consider a simplicial complex [50] or, more generally a cell complex. A hypercubic lattice
is the simplest and most interesting case. But the following considerations can be generalized.
The lattice of dimension v consists of 0-cells (sites), 1-cells (links), 2-cells (plaquettes =
squares), possibly 3-cells (cubes) etc.
Let C the set of all n-cells. The cells are oriented for n # 0. The cell with the opposite
orientation to ¢ is denoted —c. Formal sums

C=> ac (50)

ceCm

of n-cells ¢ with integer coefficients are called n-chains. The boundary of (n + ])—ce” a n-cell
with coefficients 0, £1. Tt is determined by the incidence matrix w.

dc = Z w™e (51)

w? = 1,(—1) if b is in the boundary of ¢, and if it has the same (opposite) orientation. For
instance, a link b from site = to site y has boundary db = y —x. The boundary dp of a plaquette
p is the sum of four oriented links, etc.

We stipulate that w®™ =0 if ¢ is a n-cell and e is a k-cell with & #n + 1, and

W = —w™ . (52)

In this chapter we want to consider models of a hamiltonian dynamics in which the incidence
matrix plays the role of the symplectic matrix w. The boundary of a boundary vanishes.

9* = 0. (53)
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Besides the boundary operator 0 we will also need the coboundary operator 9*. The
coboundary 9% of a (n — 1)-cell ¢ is a n-chain. It is defined by

Je = Z w™e . (54)

CGO"’

The dynamical variables of our models will be functions f which assign a real number f(¢)
to every cell ¢ of some given dimension n. The definition of f can be extended to chains of
the form (50) by setting f(C) = > .con acf(c). f becomes a Z-linear map from n-chains to R.
Such functions are called n-cochains. The exterior derivative d and the coderivative d* act on
cochains. They are defined by

df(e) = floe) = Y whle) . (55)

860"71

dg(c) = g(d"c) = Y W gle) (56)

860"+1

for a n-chain ¢, (n — 1)-cochain f and (n + 1)-cochain g. They obey d* = 0 = d*. d* ist the
adjoint operator of d in a space of square summable cochains.
We will also write f. in place of f(¢).

A model with frustration

In this model, the objects are labelled by the sites = of a v-dimensional hypercubic lattice.
Their states are given by real variables 7(x). The elementary arrows are assigned to links b.
Their state is described by real variables o(b) = —a(—b)

The symplectic matrix shall be given by the incidence matrix. As a Hamiltonian we adopt

= A w ) (a) + o b ()} (57)

The sum runs over all sites x und all links . Tinks which differ only in orientation are not
counted twice. w(—x) is to be read as —=(x).
The Poisson-brackets are

{o(b), ()} =" . (58)

The quantities do(p) and d*x(b) are degeneracy invariants. They are therefore determined by
the initial conditions. Let us demonstrate it for do. Tts only possibly nonvanishing Poisson
bracket is

{do(p).x(a)} = Y {o(h).x(x)) (59)

= prbwbm =0 (60)
b

because 9% = ().

We consider the case that the initial conditions fix the values

do(p) = p(p), (61)
d'r = 0 (62)
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A similar situation arises in electrodynamics with electric charges or magnetic monopoles (Both
cases are related by a duality transformation).

The Hamilton equations of motion are

d

Eﬂ'(?‘) = d"o(x) (63)
d
Jolb) = —dr(b) (64)

The composition of arrows shall be effected by addition of variables o(b) along the path.
The identity arrow is represented by addition of 0.

p(p) determines whether the category is frustrated or not. Let by o b} and by o b, the two
paths between diametrically opposite corners 2 and y of a plaquette p, and let f; and f, the
corresponding arrows f; = o(b;) + o(b;). Depending on the orientation of the plaquette

fy' o fi =+p(p) (65)

The category is frustrated if f, ' o fi # 1, for at least one p, i.e. if at least one p(p) # 0. In
this model the frustration p(p) is a constant of motion.

Let us now try to solve the constraint (61).

o(b) = &(b) + do(h) (66)

Herein & is a particular solution. It can be considered given by p and possibly a cohomology
class. The Poisson brackets are reproduced by

{r(z), 0(y)} = bay-

¢ is a function on sites. Assuming the lattice has no boundary, we can integrate (sum) by
parts, and the Hamiltonian assumes the following form

:f—z P) 4 6 Ao ()] + 3 #(B)$(Ab) + const . (67)

In this formula —A = d*d is the Laplacian acting on functions on sites of the lattice.
One verifies that d*m is no longer a degeneracy invariant. Now it generates gauge transfor-
mations of ¢

= S ADE D), 6101} = () (63)

The gauge function A lives on links b.

This formulation has the draw back that the Hamiltonian has become complicated and
contains quantities which were furnished by he initial condition in the original formulation.

A better alternative is a first order formalism where o is retained as a field besides ¢, and
the original Hamiltonian is retained. There is now again a degeneracy invariant

o(b) — d(h) (69)
which is fixed by the initial conditions. This formalism generalizes to nonabelian gauge theories.
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Appendix C: Invariants and types of objects

We consider first lattice gauge theory as an example
In lattice gauge theory a vector space V,. of some dimension N is attached to every site x.
Tinear maps

UC): V.=, (70)

are associated with paths (' on the lattice from x to y. They are known as parallel transporters.
Compare eq.(26)ff.

The gauge group may be fixed by equipping the vector spaces with additional structure
which is required to be invariant under parallel transport [18].

An invariant scalar product <, > is the most important example.

<, > Ve x Vo= O (71)
(v,w) — <ov,w>, (72)

with the invariance property
< v > =< U(C)o,U(C)w >, . (73)

This leaves the freedom of gauge transformations which leave the scalar product invariant

S(x):V, = V., (74)
< Sz, S(x)w >, = <v,w>,, (75)
U(C) > SUC)S() (76)

The group of such gauge transformations is isomorphic to U(N).

Starting from some scalar product at a fixed site & an invariant scalar product can be defined
for all o, if the invariance property (73) holds for closed paths €' which begin and terminate at
r=1y=1.

The gauge group is further reduced to SU(N) if the existence of a determinant is postulated
which is invariant under parallel transport.

det, : V. x...xV, — C, (totally antisymmetric) (77)
(v1,...on) = det(v1 Ao Aoy) (78)
dety(v1 Ao ANoy) = det,(U(C)or Ao NU(CHow) . (79)

Let us mention that the linearity of the maps (70), the construction of tensor products of spaces
W, =V, ®..®V, of V,, and the rules for parallel transport of vector products in these tensor
product spaces W, can all be interpreted as existence of invariants which are mapped into
themselves under parallel transport along closed paths. If the tensor product is changed in a
suitable way [15], one arrives at quantum group gauge theories [17]

We want to generalize this construction to arbitrary categories K. We use their represen-
tation as communication networks.

Definition 14 (Invariants) An invariant is a functor which maps K or a category which is
derived from K to an unfrustrated category k.
The invariant is called real valued or a coupling constant, if the objects in k are subsets of

R.
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We are interested in invariants which are defined for every category in some family. In order
to preserve the locality properties, inclusions should be respected. Therefore we demand that
the functor on a subcategory should be defined by restriction.

Example 15 : An object-invariant F' of degree n is defined by a partition of objects X in
equivalence classes [X], called types of objects, and maps

Fx :Qx x ..Qx — Mix) (n factors) (80)

following property. If there is an arrow from X to'Y, then a map with the following properties
is defined

ovixy s Mixyp — My, (81)
oy =1d . QOYIIX] = QIX] (82)

and for every arrow f: X — Y

iy Fx (v, vn) = Fy (Yo, Vo) (83)

The defining properties of an object-invariant of degree n make it a functor. The functor maps
the product category K™ 7 into an unfrustrated category with objects Mx] and arrows dppx-
The composition of arrows in the image category is defined as the composition of maps. Since
the arrows are maps, the image category is a communication network.

The special case with only one type Mx) is especially important.

The following type of invariant is similar to the object invariants.

By assumption, the spaces 1y are differentiable manifolds. Therefore they possess tangent
spaces TQ x. The elements of T,Q)x are tangent vectors to curves through v € Qx. Given
f: X =Y, then Yf:Qx — Qy is defined as a map, and therefore also the map of curves in
Qx into curves in €)y. By canonical construction, this defines a map

(V) : TQx s TQy (84)

Example 16 (tangential invariant) A tangential invariant is defined by a partition of the ob-
jects X in equivalence classes [X], and maps

L}( : TQX X TQX — M[X] (85)

in spaces Mixy. Lx is defined for every object and has the same properties as the map Fx for
an object invariant of 2% degree, except that the map Y f must be replaced by (Y f)*.

The tangential invariants can be regarded as functors on a tangential category T'K derived
from K.

Finally there exist invariants for arrows f € Mor(X, X).

Example 17 : (loop invariant) A loop invariant G is defined by a partition of the objects in
types [ X| and maps
Gx : Mor(X, X) — Mxj (86)

"The input spaces in K™ are Ax x ... x Ax (n factors) etc. The action of objects and arrows is declared in
the natural way
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in spaces Mixy with the following properties

ovixy s Mixp — My, (87)

such that for every arrow g : X +— Y which possesses an inverse g~ 1Y — X

o Gx(f) =Gylgo fog ). (89)

for every f € Mor(X, X).

The defining properties of a loop invariant make it into a functor of a category K’ into an
unfrustrated category. K’ is the category which is obtained from K as follows. Tts arrows are
arrows connecting different objects of K and the identity arrows, and its objects are arrows
s € Mor(X,X)of K. f o9 ist defined by composition of arrows in K.

We give an example of a loop invariant. Let Ay and Qx real vector spaces on which arrows
and objects act as linear maps. Then the trace of the map X f : Ox — Qx associated with
loops f € Mor(X, X) is a loop invariant.

By definition, the possibility of dividing in types is determined by the existing functorial
maps into unfrustrated categories.

Intuitively this means that the communication network admits messages of an agent about
his type. The message received by the recipient does not depend on the path which the message
took. (Messages for which this is not the case might be called “gossip”).

et us now discuss how Hamiltonians are constructed.

Hamiltonians may be constructed out of invariants which do not depend on a choice of
coordinates. They will then obey the relativity principle.

et b an arbitrary link and let f : X +— Y the corresponding elementary arrow. Its state will
be determined by a point £ € M as will be the states of the objects. L.et F'* object invariants
of degree 2. We write Wx = X as before. Set

(&) =D (Y Uy, Uy) . (90)

This fulfills our locality postulates. We agree to include here also selflinks s = (#, ) with which
the arrow fix is associated. In this case we get

Ho(€) = Fx(Vx, Vx) . (91)

Sometimes object invariant F'* of degree 1 exist. They also furnish contributions

Ho(€) = > FX(Vx) (92)

to the Hamiltonian, and the same is true of invariants of higher order.

In the case of selflinks s which connect a node = with itself, there exist additional possible
contributions to H. They are constructed from loop invariants. et f : X — X the arrow
associated with s. Set

H(&) = >_Gu(f) - (93)

In addition to the Hamiltonian one needs a symplectic matrix w(&). Its pseudo-inverse (&) is
an antisymmetric bilinear form

TeMxTeM — R (94)
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Such bilinear forms can be made out of tangential invariants.

For the purpose of formulating a Thermo-dynamics in the sense of Prigogine, a metric on
M was needed. The metric tensor defines also a bilinear form (94), it must be symmetric and
positive definite.

Appendix D: Dynamics and diffusion in a 2-dimensional
phase space

It is very instructive to consider the simplest possible example: time independent linear equa-

tions of motion in a 2-dimensional phase space M = R?  The coordinates in M shall be
denoted by £ = (£',£%)" (column vector). The symplectic form shall be Q = 2d¢' A d£? ) hence
Wl = —w'? =1,

The possible equations of motion and their solutions are given by 1-parameter groups of
symplectic transformations. They are of the form

%f(i) = X&), (95)
() = ¢k(0), ¢ € SL(2,R) (96)
o = exp Xt , X €sl(2,R), (97)

The generator X may be an elliptic, parabolic or hyperbolic element of s/(2, R) with eigen-
values +i2a, 0 or +a, a > 0, respectively.
An unstable direction arises only in the hyperbolic case. This case will be considered first.

8.1 Hyperbolic motion

X can be diagonalized by real basis transformations. The Hamiltonian will then take the form
H=at'¢® (a>0). (98)

The Hamiltonian equations of motion read

d 1 d 2
2 1) = 0 (1), S (1) = —a(1) . (99)

with solution
(1) = e™EN0) , (1) = N (0) (100)

The point 0 is a critical point. The 1-direction is expanding, the 2-direction contracting, with
Iiapunov exponent +a.

The equation of motion is already linear and is therefore identical to its linearization. The
Jacobi matrix

K = diag(a, —a) . (101)

The Hamiltonian equations of motion for the normalized distribution function read (Nota-

tion: 9; = 0/0&")

d
S o€t — E£0)p =0 (102)
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The critical point 0 furnishes the solution

p(&,1) = 6(E1)o(E7). (103)
If the distribution is Gaussian at time 0, then it remains Gaussian at all times.
p(&1) = pol€ 1)po(€751) (104)

po(€1) = @rfa) Texp[—(EN2f5(10] . fa(t) = e, (105)
PREL) = (2nfR(1)) T exp[ (€222, E(1) = Age T (106)

~
I

The parameter A; determine the width of the distribution at time 0.
It is seen that the Gauss distribution in £'-direction expands exponentially with time ¢,

AE = e, (107)

while exponential contraction is observed in £2-direction. The microscopic entropy

oo / AV de p(€, 1) In p(€,1) = %Z[m 2w X (AL +1] (108)

3

is constant in time, in agreement with general theory.

Let us now examine what happens if we switch on a diffusion AOK,.d in the expanding
direction with strength 2A. K, ist equal to the Jacobi operator, multiplied with the projector
on strictly positive eigenvalues.

Explicitly Ky = diag(a,0). The time evolution of the distribution function will now be
governed by

d
Wp—)\(y(f)?p—l—(y(fq((% —E20,)p = 0. (109)

There exist again Gauss-distributed solutions of the form

p(&,t) = p' (&' 1)p(E7,1) (110)

with unchanged second factor, and with

P ) = (2r (1) Fexpl— ()22 (1] L F (1) =A™ 1) (111)

This is the solution which develops from a é-function at time 0.
An expanding Gauss packet is now found when the starting distribution is a é-function in
&' at time t = 0 as well. The width evolves according to

AE _{ (Dt)2  when ¢t +— 0 (112)

:
A2e when 1 — oo,

mit ) = 2aX. We see that the behavior at large ¢ is the same as it was when there was no
diffusion but an initial width A > 0 at time ¢t = 0.

If we imagine that we may for the purpose of predictions convolute the initial distribution
with a Gauss-function of width A¢' = X because of finite measuring accuracy, then the intro-
duction of diffusion in the unstable direction has no detectable influence of the dynamics. It
only simulates a finite measuring accuracy.
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According to Prigogine [2] the thermo-dynamic time evolution should differ from the Hamil-
tonian one by a term which is odd under time reflection. This is not yet the case here. But
it can be achieved by introducing an additional diffusion term also in the stable direction. We
shall see that this is permissible in the same spirit of simulating a limited measuring accuracy.
We replace K by K, — K_ and obtain as an equation for p

d
Wp—l—)\(f)(fﬂ_—K,)(()—I—{H,p}:() (113)
Explicitly,
d
Wp+Aa(a$+a§)+a(51a1 —E)p=0. (114)
The solution which evolves from a ¢ -function at time # = 0 is
p(&,t) = p' (& 1)p*(E,1) (115)
with p' as before, and
P 1) = 2r (1)) Texp[—(EV /22 ()] . (1) =M1 —e ). (116)
The width of the distribution in £2 behaves as follows,

Afg_{ (Dt)s  when £ 0 (117)

A when ¢ — oo,

with ) = 2aA. We see that the width remains now finite and equal to a hypothetical measuring
uncertainty A,

The expression (108) for the entropy is correct for every Gauss distribution. For large ¢, the
entropy now increases linearly with time

Sity=1+ %]n[(Qﬂ')\)Q(] —e 2N )] ~ at . (118)

Parabolic motion

The free motion of a particle furnishes the prototype of a parabolic dynamics. We write £' in
place of p and €2 in place of ¢. The Hamiltonian is H = %5(51)2 The solution of the equation
of motion is

) =2¢0) ., &£€0)=&(0)+pE(0). (119)

The equation of motion for the distribution function has the explicit form

d
%P*55132l>: 0. (]20>

It possesses the Gauss-distributed solution

plét) = 2m(ka) Fexpl— (€ + (€ ')} (121)

The probability distribution of the individual coordinates obtains from this as

p(€') = ./dfzp(fq,fz,t) = (27 X\1) ]

N =

exp{—5-(€')") : (122)
1

pl€) = [ A€ p(€ €0 = (2r ) expl - (€, (123)

Fo) = M8+ s (124)



The mean square deviation of ¢' remains hounded, while
(AL")" = M (B1)" + Xs . (125)

An initial uncertainty of £% alone does not create an uncertainty which grows with time. But
an initial uncertainty in momentum £' creates an uncertainty square in position £ which grows
quadratically with time, but not exponentially as happened in the hyperbolic case.

Let us assume that the measuring uncertainties Ay = (A£")? and Ay = (A&?)? at timet =0

obey an uncertainty relation
2

h
Mdy > - (126)

Then it follows from eq. (125), that (A£")? > gﬁf )
Let us tentatively introduce a diffusion term for ¢' in the equation of motion for the distri-
bution function.

d D
%P*551320*5312/>:0 : (127)

The equation has the (Gauss-distributed solution

maw-—wuﬁa»%wm%ﬂﬁf+a%¢ﬁﬂWV}7 (125)

F(t) = Di+ . (129)

The distribution of the individual coordinates £ can be computed as before. The uncertainty
of £% is constant in time and for the uncertainty of £' we find

(AE)? = Dt + Xy + M (B1)* . (130)

Assuming, the uncertainty relation (126) is valid at time 0, the asymptotic behaviour of A&?
for large ¢ remains the same as before.

This could justify the introduction of a diffusion for parabolic motions also under restrictive
conditions on the measuring uncertainties. But all this looks very much like a simulation of
quantum mechanical effects. Therefore we will not consider it further. We will not introduce
diffusion processes for parabolic modes in this paper.

et us note, however, that parabolic matrices can be obtained from hyperbolic matrices as
a limit by a contraction. Therefore parabolic motions can be limits of hyperbolic motions. A
situation like this occurs in the Sinai billard. The time evolution operator ¢, for the deviation
is hyperbolic for a short but finite ¢ if scattering occurs at time 0 4 ¢. But it becomes parabolic
in the limit £ — 0. One should think of the scattering process as an idealization of a scattering
process which lasts a finite time.

Example: Elliptic motion

The 1-dimensional harmonic oscillator is the prototype of an elliptic motion. The Hamilto-

nian is

0= SHE + (€.

A detailed treatment is omitted. Tt is well known that an initial uncertainty in either ¢' or
£% or both will lead to uncertainties which remain bounded for all times.

In contrast to this, the introduction of a diffusion process into equation of motion for the
distribution function would lead to an uncertainty which grows with time. Therefore such a
diffusion term cannot be justified by the postulate of a finite measuring accuracy.
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Conclusion

The introduction of a diffusion process in order to simulate a finite measuring accuracy can
be justified in the hyperbolic case. Under restrictive conditions on the measuring uncertainties
this is also true for the parabolic case, but not in the elliptic case. It is discussed in the main
text how to separate out the hyperbolic modes in case the phase space has more dimensions.
In this case the motion is in general not simply either hyperbolic, or parabolic or elliptic, but
a combination

A systematic discussion of possible diffusion processes for parabolic modes is not attempted
here. Tt is made difficult also by the nonapplicability of Krein’s stability analysis (the symplectic
matrix has a zero spectral value). We adopt the attitude that this problem is solved by quantum
mechanics.

Appendix D: Poynting vector

The Hamiltonian time development of a virtual composite object, or of any subcategory of K,
under the influence of its environment is given by

d

T = {Ho, &} + gy (131)
N o OHy
HO == Z Hb bl Femt = Z BW : (]32)
beK(0) bedK+(0) ;

Ho depends only on the state of the objects and arrows in K,(O) ab. It describes the dynamics
in the absence of the influence of the environment. The exterior forces F? . describe the influence
of the environment. We regard them as given by the state of the system at time .

The change of energy Hp in O comes out of the equations of motion.

d

¢ = Ao &+ I, (133)

OH
Ho= Y. H, , Fo,= > wi—2 (134)

bEKH(O) bEAK(O) d¢

It follows that

I Ho=—F] 0 . (135)
dt [ emt(f)f(y o - ¢

(83

According to formula for F2_ the influx of energy on the right hand side of eq.(135) is a sum

of contributions of e]ementé,fy arrows which point into O They sit on links 6. Therefore

d
—Ho = — > 5 (136)
dt beAIK(O)
OH, 0
Sy = —w—H, 137
b Tl Tolle (137)

We call S the Poynting vector as in electrodynamics. According to our assumptions about
the symplectic matrix only derivatives with respect to such variables occur, which indicate the
state of an object at the end of an arrow from outside. They come only from contributions Hy
of links & which point to these objects from inside.
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