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1 Complex adaptive systemsare all those which are alive in the widest sense. They include chemical systems, especiallyautocatalytic ones, neural nets, living organisms, ecosystems, cognitive systems, organisationsof human society such as universities, economies, etc.All these systems consist of a multitude of individual agents - molecules, neurons, plants oranimals, enterprises etc. Whatever they are, they organize into larger structures in a continuousprocess of adaptation and competition.Striking similarities in the behavior of very di�erent such systems have often been observed.Processes in the brain have been compared to the evolution of the species, for instance. There-fore a universal theory is sought. It must necessarily be quite abstract, since one wants toabstract from the concrete properties of special systems. Using such a universal theory as aframework, one hopes to generalize the results of model studies by reformulating them in sucha way that only the notions available in the the general theory are used. This should then makeit possible to translate to other situations, from physical chemistry to economy etc.Chemistry is the science of atoms and the structure of their compounds. We seek a universalchemistry which deals with any kind of agents and their bonds.The agents of a complex adaptive system evolve under the in
uence of the interaction withother agents. This is not so fundamentally di�erent from what happens in physical systems.Therefore the general framework should accommodate the successful physical theories, in par-ticular general relativity and the gauge theories of elementary particles. For simplicity onlysituations with a discrete number of agents will be considered here. What we �nd could becalled a cross over between neural nets and lattice gauge theories. 12 ParadigmaThe fundamental principles are basically the same as in the prototypical physical theories. Thetheory has therefore a geometric character. 21. Locality or Nahewirkungsprinzip: The relations imposed by fundamental laws are local.The fundamental physical equations are valid everywhere but they relate only dynamicalvariables at the same point of space and time, or in an in�nitesimal neighbourhood of it.2. Relativity or Naheinformationsprinzip: There exists in general no a priori possibilityto compare physical quantities of observers (or \agents") at di�erent positions in spacetime.To compare, a signal must be emitted. It will in general be in
uenced by the medium orby intermediary stations through which it passes.An agent manifests itself only through its (direct or indirect) relations with other agents.3. emergence Out of the presence of local relations there arise collective phenomena of anonlocal character.1General relativity can be considered as a gauge theory, [42, 18] and there exist discretized versions ofit [44, 43]2This reminds of Spinoza. His opus Ethica, ordine geometrica demonstrata in
uenced Lessing and Goethe.1



Object: Arrow: -s -� ���@@R@@I��	Figure 1: brick wallThe word \emergence" is not costumary in physics, but it makes sense. Examples are thepropagation of electromagnetic waves or the gravitational force exerted by the sun on theearth.Special methods have been developed for cases, where an immediate solution of the funda-mental equations is not possible. Among them is Wilson's renormalization group. It furnishesa general method by which to derive e�ective theories which describe phenomena on coarserand coarser length scales. [21]. In addition, multigrid and similar multiscale methods exist alsofor the solution of partial di�erential equations [23] and for other problems including quantum�eld theory [24].The importance of a relativity principle may not be obvious in the context of complexadaptive system. To make the point, let me formulate thepostmodern relativity principle:Reality is of no immediate importance for human action.Only its perception is important, i.e. what is held to be realityTrue or not, it is certain that this principle is operative in politics and elsewhere. This showsthat relativity principles are not irrelevant to our problem.3 Structure: What is a thing? Why is it more than thesum of its partsLet us �rst consider structure in inanimate things. Consider a brick wall as an example (�gure1). It consists of objects, the bricks, which are its parts. The arrows in �gure 1 indicateneighbourship relations. These arrows determine the structure. They make the wall into morethan the sum of its bricks.In mathematics, objects and arrows make a category. We consider things as categories inthis sense. The arrows determine their structure. The objects of a category can be categoriesthemselves. That is, they may have internal structure themselves. In this way things can bemade out of things. A tower may be built out of brick walls, for instance.Without loss of generality, all objects may be regarded as categories, since every object maybe made into a trivial category. It has only one object and one arrow which represents theidentity of the object with itself.In �gure 1, only the arrows to nearest neighbour bricks were drawn. They may be thoughtto represent the spatial translation which takes one brick into the other. We may also considerarrows to next nearest neighbours etc. They are obtained by composition of arrows to nearest2



6 ?���� ����t t� �� �-�X YiX iYFigure 2: \couple"neighbours, etc.CategoriesThe axiomatic properties of a category are as follows:A category K consists of a number of objects X;Y; :::, and of arrows f; g; ::: which pointfrom one object to another. 3 We write Obj(K) for the class of objects of a category K, andMor(Y;X) or MorK(Y;X) for the set of its arrows from one object X to another object Y . Inplace of f 2 Mor(Y;X) the alternative notation f : X 7! Y is used. There are arrows fromone object X to itself. Among them is �X which expresses the relation of identity of the objectwith itself1. (composition of arrows:) If f : X 7! Y und g : Y 7! Z are arrows then the arrowg �Y f : X 7! Zis de�ned. The composition is associative.2. (identity) �X is de�ned for all objects X, and �Y �Y f = f �X �X for all f : X 7! Y .The symbol Y underneath � could be omitted, because an arrow f in a given category canpoint to one object only. But the chosen notation will be convenient for our purpose, becausewe shall have to consider several categories at the same time. Moreover we insist on writing �Xrather than id for the arrow which expresses identity.An example of a category with two objects is shown in �gure 2. It represents a couple. Xis married to Y and Y to X, and each of them is identical with itself.Examples from mathematics1. objects X: topological spacesarrows f : X 7! Y : continuous maps2. objects X: commutative groupsarrows f : X 7! Y : homomorphisms of groupsIn commutative groups, the group multiplication is usually written as +. Examples of commu-tative groups are Z (integers), Zp (integers modulo p), Z � :::Z� :::Zp1:::Zpn.3In German, the terminology Pfeil=arrow is standard. In english, the name morphism is more often used.We stick to \arrow" 3



Application to complex adaptive systemsWe formulate a calculus of agents and their relations in the language of categories.objects = agents (1)arrows = relations, connections or bonds between agents (2)This provides an extremely general framework. Yet it will be seen to lead straight to gaugetheories - more precisely to a kind of crossing of neural nets with lattice gauge theory.The arrows are directed. A mutual relation will have to be represented by a double arrow,one arrow in one direction and one into the other.The composition property of arrows is reasonable in the context of complex adaptive sys-tems. Think of friends of a friend.We shall impose additional structure later on. Certain arrows will be declared elementary.All the others may be composed from them. In the brick wall, the arrows to nearest neighbourswould be the elementary ones. The identity arrow is also considered elementary.4 DynamicsDynamics is time development. Agents (objects) will change under the in
uence of their rela-tions. And the relations (arrows f : X 7! Y ) will change by the action of the agents concerned(X and Y ). We regard those relations f as elementary which can e�ect a change of agent Ywithout time delay. This will be made more precise in a moment.The time development of agents and their relations determines a mapt 7! Ktto a category which depends on time. Following a suggestion of Sorin Solomon's I call this adrama.The agents will typically have some degree of permanence and a history. Therefore it isreasonable to speak of a change of the state of an object with label or address x, or \at" x forshort. Sometimes x is called a node. Similarly elementary arrows will be labelled by labels bcalled links. b = (y; x; �) if the associated arrow points from an object at x to an object at y.At a level of fundamental objects we may imagine a dynamics which is deterministic andnondissipative. Let us assume that it is Hamiltonian, with continuous time t.We will discuss later on how a stochastic and dissipative dynamics emerges from this at thelevel of composite objects, i.e. objects with internal structure.LetM be the space of all possible states of the collection of objects and arrows, i.e. Kt 2 Mfor all times t. Call it phase space. Suppose that coordinates f��g are chosen in some way toidentify points � 2 M. According to the relativity principle, there are no preferred coordinateson M, and the dynamical laws must be formulated so that they are valid for any choice ofcoordinates. We demand, however, that each coordinate �� should refer to only one object orarrow.The Hamiltonian equations have the form (@� = @=@��)ddt�� = X� @�H(�)!�� (3)= fH; ��g (4)4



with Hamiltonian H, symplectic matrix ! and Poisson brackets f; g.!�� = �!��fF;Gg = (@�F )!��(@�G); (5)Example: In a mechanical system with a 2-dimensional phase space, �1 = p; �2 = q; !12 = 1 =�!21, and (3) are the usual Hamilton equations of motion.We do not insist that the matrix ! has an inverse. If it has not, we speak of a degeneracy.There are very interesting models which are degenerate in this sense. Degeneracies lead toconstraints, as we shall see.Maxwell's electrodynamics on a lattice, formulated in terms of electric and magnetic �elds,are an example, and there are many similar ones. The symplectic matrix is given by theincidence matrix of a simplicial or cell complex in these examples, and the degeneracy comesfrom the fact that the boundary operator has square @2 = 0 (see appendix B). Lattice gaugetheories in a �rst order formalism are also degenerate in this sense. Applications of lattice gasesto model predator prey systems have been proposed [46]!�� may be �-dependent. In this case it must satisfy conditions which ensure that thePoisson brackets satisfy the Jacobi identity, and that a volume form v on M exists which isinvariant under the Hamiltonian time developmentffF;Gg;Kg+ ffK;Fg; Gg+ ffG;Kg; Fg = 0 ; (6)Z dv fF;Hg = 0 (7)for every F . If (!��) has an inverse (!��) then the condition is su�cient that the 2-form
 = !��d��d�� is closed [32].The Poisson bracket de�nes a derivation of the algebra of functions on M,fF;GKg = fF;GgK +GfF;Kg : (8)If a deterministic dynamics is given, then the initial state �0 of the system at some timet = 0 determines the state �t for all later times t.NB: The initial state is considered known. It is the aim of the formulation of a dynamicallaw to determine the future state from a known initial state. How to know it is another question.In a universal dynamics one seeks to extract as much information as possible from theknown initial state. The Hamiltonian (or the principles from which it is determined) should beas universal as possible, while di�erent model situations are distinguished by initial states ofdi�erent kinds.For instance, the Maxwell equation rE = 4�� (9)is a condition on the possible initial states. The charge density � is proportional to the chargesof the particles which serve as coupling constants in the Hamiltonian. Therefore the initialstate contains information on them.It is characteristic of gauge theories [12] that the initial state must satisfy constraints which�x conserved local quantities. �i = 0 (10)fH;�ig = 0 : (11)It is standard to call also �i a constraint. We distinguish5



1. Degeneracy constraints: They satisfy f�; ��g = 0for all variables ��2. Generators of in�nitesimal gauge transformations � 7! � + ��,��� = f�; ��g (12)It follows from the de�nition (12) that in�nitesimal gauge transformations leave the Hamiltonianinvariant, dd�H(� + ���)j�=0 = �fH;�g = 0 : (13)Of course, the values of all conserved quantities are determined by the initial conditions. If theHamiltonian is not explicitly time dependent, then energy is conserved. Therefore the motionis constraint to the energy surface ME whereH = E :In general relativistic theories, E = 0 is often enforced by other constraints.LocalityWe exhibit additional structure in categories which describe complex systems. Some of thearrows will be declared elementary. They represent direct relations. Other arrows whichrepresent indirect relations can be composed from them.This substitutes for locality properties in physics. Fundamental physical laws relate onlyphysical quantities in an in�nitesimal neighbourhood of the same point in space and time. Indiscretized models such as lattice gauge theory, this is embodied through nearest neighbourinteractions.In complex adaptive systems the situation can be more complicated. The local topologycan be complicated. And at a high level, where agents have much internal structure, there canbe special agents which are connected to all or a large fraction of the other agents. This iscalled broadcasting. Media (radio, TV, newspapers) are examples.But similar situations arise also in physics. Newtons law of gravitation involves forces ata distance. Yet Newtons law can be derived (modulo very small corrections) from Einsteinsgeneral relativity which obeys very strong principles of locality. Spacetime becomes a mediumhere.It has been noted that seemingly purposeful activity of living organisms need not be basedon an organizing intelligence. The fundamental idea is that the agents (e.g. legs of an insect)in
uence each other only locally, from neighbour to neighbour, and this results in global be-haviour which is not governed by a central intelligence. Studies of insects showed for someanimals that their legs exchange neuronal signals, and this results in coordinated walking,without need for an insect brain which coordinates the activity [48]Ultimately we want to understand all kinds of organized behavior and self organization asa consequence of local interactions at some fundamental enough level. This is what the wordemergence means. The examples show that often seemingly high level behavior can readily beunderstood as a consequence of local interactions.6



This principle is being discussed in many disciplines. Another example is the detectionof saliency in pictures by the visual system. Ullmann and Shashua presented a model whichexplains how this task could be performed locally in low level neurons in the visual cortex [13].The salient features of a picture are characterized by relatively long straight lines. Thinkingof the picture as made of directed line elements (which are recorded by Hubel-Wiesel neurons[14]), the activity of a neuron which represents such a a line element gets enhanced in each stepof an iterative process if it has neighbours of nearly the same direction. The iteration steps canbe regarded as local dynamics in discrete time.Let us return to the formalism of categories. The formulation of a dynamics forces us toconsider families of categories made out of objects and arrows which are taken from certainsets (state spaces). To prepare the ground for a local dynamics we need to specify the localityproperties of the composition law of arrows �rst.Postulate 1 (Locality of the composition law) f �X g is de�ned if f; g;X are elements of atleast one category K in the family. It depends on f; g;X but not on K.The above mentioned condition of locality on the dynamics will be satis�ed if the Hamiltonianand the symplectic form have the following properties.The state of the object at x will be determined by real variables �xm, and the state of thearrow at link b by real variables �bn Collectively they are denoted � = (��), � = (x;m) resp.(b; n).Postulate 2 (First order formalism)H(�) =Xb Hb(�); : (14)and the following restrictions are imposed on the �-dependence of Hb and on the symplecticmatrix !��.1. Hb depends only on the state of the arrow at link b and on the state of the objects whichit links;2. !�� depends only on the state of those objects and arrows to which �; � refer; in case ofan arrow it may also depend on the object to which this arrow points. !�� = 0 unless �; �refer to the same object or arrow, or to an arrow and the object to which it points.�X may occur among the arrows in the sum (14). In this case we may write Hx in place of Hb.Hx depends only on the state of object X at x.Apart from locality, the form of H embodies the assumption that the \force" on an object isthe sum of forces which are exerted by objects with which it has direct relations. That is, thereare no true \multi-object-forces". This postulate refers only to the fundamental deterministicdynamics. The e�ective stochastic and dissipative dynamics at the level of composite objectswith internal structure will not inherit this property.Let O be some subset of all objects, and let K(O) be the category which is generatedby these objects and the elementary relations between them. Starting from the Hamiltonianform of the equations of motion, and from the locality properties of the Hamiltonian, the timedevelopment of K(O) under the in
uence of its environment can be analysed. This is donein Appendix D. The environment consists of objects not in O, together with their elementaryrelations. 7



KinematicsBesides the dynamical laws, there can also be kinematical rules. They will determine changesof status of arrows from composite to elementary and vice versa. In physical systems this maybe determined by neighbourhood of objects in space.5 Communication Networks, Consensus, Gauge invari-anceLet us return to mathematics for a moment. Given categories K and K 0, a functor F is a mapK 7! K 0which maps objects into objects and arrows into arrows in such a way that the compositionrules for arrows are respected F (g �X f) = F (g) �F (X) F (f) ; (15)F (�X) = �F (X) : (16)There are also contravariant functors where the order is reversed, but we will not need them.Example from mathematicsAlgebraic topology exhibits a functor from the category of topological spaces and continuousmaps to the category of commutative groups and homomorphisms [50]This shows that functors can exhibit common structure of completely di�erent categories.This is exactly what we want.Communication networksWe say a category K 0 is a representation of K if there exists a functor K 7! K 0.Theorem 3 (Representation of a category as a communication network) Every category Kpermits a faithful representation with the following propertiesTo every object X there exists an input space AX and an output space 
X . The input spacecontains a distinguished element ; (\empty input"). Arrows f 2 Mor(Y;X); g 2 Mor(Z; Y )and objects X act as maps X : AX 7! 
X ; (17)�X : 
X 7! AX (18)f : 
X 7! AY (19)with the properties X�X = id : 
X 7! 
X ; �XX = id : AX 7! AX ; (20)g �Y f = gY f : 
X 7! AZ : (21)8



It should be noted that �X does not act as the identity map in general. In the context ofcognition, �X may be associated with consciousness. It makes an agent aware of his actions(output).The proof of the theorem will be given in Appendix A.Let us note that this theorem refers to a single category, and the additional structure broughtin by locality is not considered. In fact, the construction of the communication network usesglobal properties of the category.When the locality postulates are imposed, a composite arrow f which is incident on Y mayhave an implicit dependence on Y . This occurs when the breakdown of f into elementaryarrows contains a segment fn �Y fn+1. One may extract this Y dependence and use it to de�nea composition law for inputs, under certain extra conditions.Curvature = Field Strength = FrustrationXHHj��*Y1Y2��*HHj Zf1f2 g1g2This concept is central in gauge theories of all kinds. It is called curvature in general relativity,�eld strength in gauge theories of elementary particles, and frustration in spin glasses. But itis all the same and can be formulated in the general context of categories.RelativityIn general relativity there is a space time manifold M with points x. Particles travel alongworldlines on M. These world lines may be parametrized by eigentime � . The eigentimeis shown by an ideal clock which the particle carries along. The worldline penetrates eachspacelike hypersurface � (\space") only once.The 4-velocity u 2 TxM of the particle at x is de�ned as the tangent vectors to its worldline,parametrized by eigentime. TxM is the linear space spanned by all tangent vectors to curvesthrough x.There exists a basic principle of locality and relativity which generalizes the famous Na-hewirkungsprinzip:Naheinformationsprinzip: [18]There is no a priori possibility of comparing vectors u 2 TxM and v 2 TyM at distinct pointsx 6= y 2 M. To compare, u must be parallel transported along a path C from x to y, forinstance by emission of a signal which travels along C, i.e. by a process of communications sX Y6 ���RC9



The result of the parallel transport will in general depend on the path C and on the gravi-tational �elds encountered at intermediate stations z on C.The path C may be considered composed from in�nitesimal pieces C = bn � ::: � b1, and theparallel transporter U(C) : TxM 7! TyM (22)may be regarded as a composite arrowU(C) = U(bn) � ::: � U(b1) (23)which is made from elementary arrows attached to links bi. After a choice of coordinates onM and a of a corresponding holonomic basis in TxM,U(b) = 1� ��(x)�x�; : (24)with matrix ��(x) furnished by the connection coe�cients (Christo�el symbols).Curvature (or frustration) is present if the parallel transporters have a nontrivial path-dependence for given initial and �nal points of the path C.In general relativity, there is a continuum of points x. But there exist discretized versionsof it with a countable number of points x and of links b from which paths can be composed[43, 44].Generalization to the general situation is possible because arrows in a category may becomposed. The Naheinformationsprinzip has its counterpart in the theory of complex adaptivesystems:Postulate 4 (Relativity principle) There is no a priori way of comparing the state of twodi�erent agents. Any one of them manifests itself only through its communication with theothersIn our framework, this communication is described by arrows which may be composed.The relativity aspect has been stressed by J. Holland [31] His Darwin relativity principleasserts the following. Each agent attempts all the time to adapt to all the others.There is no absolute measure of �tness which would be maximized by an evolutionaryprocess, but only a �tness relative to an environment. One speaks therefore of coevolution.In computer simulations, adherence to strict standards of data encapsulation in objectoriented programming [47] o�ers some protection against inadvertent violation of the relativityprinciple.Frustration can occur in categories. In the following pictorial example it occurs, if the twocomposite arrows from X to Z are di�erent.XHHj��*Y1Y2��*HHj Zf1f2 g1g2De�nition 5 (Unfrustrated category) A category is unfrustrated if there never exist two dif-ferent arrows from one given object X to another one, Y . In particular there is only one arrow�X from X to X. 10



When elementary arrows are singled out in the given category K, a path C from x to y isspeci�ed by a sequence of links b1:::bn again, with bk = (xk; xk�1; �k); xn = y; x0 = x. Theelementary arrows attached to them may be composed. In general, the resulting arrow maydepend on the path C. The category is unfrustrated if it does not.If a category is unfrustrated, synchronization is possible which produces consensus aboutwhen two agents are in the same state.With frustration, one agents owl is the other's nightingale. Generally speaking, frustrationis the simultaneous presence of relations with contradictory tendencies. This has consequencessimilar to what is familiar in spin glasses. Here is a description of a \model economy" toillustrate the point.Example 6 (frustrated economy) The example is based on the model assumption that it isman's fundamental need to feel superior to his neighbours. If so, the absolute level of materialwelfare is not essential. What counts in an economy is that every consumer possesses more thanhis neighbours do. Economy appears then as an iterative procedure which aims at satisfying thiscondition as well as possible.This is a frustrated system in the sense that the dynamics is governed by relations which arecontradictory in their tendencies. As a result, there is no well-de�ned global optimum whichthe iteration would approach. (Equality would satisfy nobodies needs...). If one were to expressby a cost functional the degree to which all the agents' needs are satis�ed, its minima wouldbe very sensitive to changes in neighbourhood relations and to the precise form of the costfunctional ( e.g. by a change of perception by the agents of their situation as could occur underthe in
uence of the media).Taking account of the possible back reaction of the economic development on these pa-rameters, an autopoietic picture [10, 11] of 
uctuations which generate 
uctuations becomesplausible.Traditional economic theory is badly equipped to deal with situations as in the example. Ithas been criticized for similar reasons by Arthur [28].The curvature- or �eld strength tensordescribes the path dependence locally. Consider a closed path C from x to x made of four linksb1; :::b4. In an unfrustrated category, the arrow f attached to C should be �X , where X is theobject at x. Therefore Xf = id : 
X 7! 
Xin the language of communication networks. The frustration is measured locally by how muchthis condition is violated.In general relativity and standard gauge theories, the parallel transporters U(C) = Xfare linear maps. In this case one may consider the di�erence Xf � id. This de�nes the �eldstrength tensor.Suppose that coordinates fx�g have been introduced on the space of points x such that thelinks b1; b2 are paths along coordinate lines in �; � direction respectively, and similarly for b3; b4(see �gure 3). Then one de�nes the components F�� of the �eld strength tensor byU(C) = 1 � F��(x)�x��x� (no sum) (25)In the general nonlinear case one has only the composite arrows along closed curves as asubstitute for 1� F���x��x�. 11



s ss s-� 6?b1b4 b2b3x x0 6-x�x�Figure 3: The �eld strength tensorDetermination of the gauge group from the initial conditionsWe wish to explain that there will be a gauge group which can be determined from the initialstate of the system at time t = 0, i.e. by the category K0 = Kt=0. We emphasized thatthis initial state is to be considered as known. We will always think of the category as acommunications network.We will begin by discussing the issue for lattice gauge theory [22, 26, 25]. Then we pointout that the construction generalizes readily to the general setup.There are two ways of determining the gauge group from the initial conditions: as a holon-omy group, and as the group of those invertible transformations which leave all gauge invariantobservables invariant. Both are related because the \gauge invariant observables" are thosewhich are invariant under parallel transport along all closed curves. Let us explain this in moredetailHolonomy groupTypically, lattice gauge theories live on hypercubic lattices � = (aZd) of lattice spacing aand dimension d. We are here interested in the Hamiltonian formulation where time remainscontinuous.The sites of the lattice are denoted by x and the links from some site x to its nearestneighbour y by b = (y; x). Associated with every site x is a complex vector space Vx. All thesevector spaces are isomorphic, but they cannot be identi�ed in a natural way because of theNaheinformationsprinzip.There may be complex matter �elds 	(x) 2 Vx. In addition, a parallel transporter isassociated with every link b = (y; x). It is a invertible linear mapU(b) : Vx 7! Vy : (26)These paralleltransporters are the lattice gauge �elds. They substitute for vector potentialsA = A�dx� in the continuum. The link �b = (x; y) carries U(�b) = U(b)�1.This �ts in the general framework as follows: Let X be the object at x. We denote theinput space without the distinguished element ; by A|X. Then
X = Vx = A|X ; (27)X; = 	(x) ; X = id on A|X; (28)and the elementary arrow attached to link b is U(b). The composition of arrows is by compo-sition of maps. 12



The gauge group is isomorphic to G� for some compact group G which can act linearly onVx. It consists of a collection of linear mapsg(x) : Vx 7! Vx ; (x 2 �):In the generic case, i.e. except for gauge �eld con�gurations which occur with probability zero,the gauge group is characterized by the conditiong(x) 2 H(x) ;where H(x) is the group of all parallel transporters U(C) along closed paths C from x to x. Itis called the holonomy group. Groups H(x) for di�erent x are isomorphic.This generalizes to the general situation as follows. An arrow f 2 Mor(Y;X) is calledinvertible if there exists an arrow f�1 2Mor(X;Y ) such thatf �X f�1 = �Y and f�1 �Y f = �X :Let X be the object at x. The holonomy semigroup at x is Mor(X;X). This is a semigroupbecause arrows can be composed. If we want a group, attention may be restricted to invertiblearrows in Mor(X;X). The gauge (semi)group is fMor(X;X)gjX2Obj(K0) : Under extra condi-tions, the holonomy groups are isomorphic for di�erent x. In particular, this is true if all arrowsare invertible and if the category is connected in the sense that Mor(X;Y ) is never empty.Invariants, coupling constantsBasically, invariants are quantities associated with objects X which are invariant under paralleltransport f along closed curves, or underf̂ = Xf : 
X 7! 
X ;for arbitrary f 2 Mor(X;X). These invariants are determined by functors which map thecategory into an unfrustrated category.In particular, coupling constants which determine the Hamiltonian are invariants of thiskind. They should be real valued. In this way the possible dynamics can be classi�ed by thefunctorial maps of the initial categoryK0 at time 0 (or of representations of it) into unfrustratedcategories whose objects are subsets of the reals.The gauge (semi)group consists of all collections fg(X)gX2Obj(K0) of maps g(x) : 
X 7! 
Xwhich leave all these invariants invariant.The invariant quantities can be constructed out of vectors v 2 
X , or of arrows f 2Mor(X;X). Details are given in Appendix C and illustrated on the example of lattice gaugetheory.In general relativity, the metric tensor is invariant under parallel transport. This is thebasic invariant. It expresses the existence of ideal clocks whose speed does not depend on theirprevious history. They can be synchronized. In other words, there is consensus about themeaning of (eigen)time.Similarly, an economy cannot exist unless consensus can be achieved about the result ofarithmetic operations on integer numbers by a process of synchronization (schools).Generally speaking, invariants are those quantities about which a consensus can be achievedamong all agents of the same type by a consistent process of synchronization.Apart from very special examples (topological �eld theories) [27] without a \true" dynamics,it does not seem to be possible to formulate dynamical laws unless there exists at least onenontrivial invariant. 13



6 Life processes as stabilized critical 
uctuationsThis year Boltzmann's 150th birthday is celebrated. On his tombstone, his formula S = k lnWfor the entropy is engraved. One of his major achievements was the H-theorem which assertsthat entropy increases. The question poses itself: Do we live in spite of this, or just because?It seems that both is the case.In spite ofExperience with Monte Carlo simulations of lattice �eld theories shows the following. Let � bethe number of time steps until a new, statistically independent state of the system is reached.If the dynamics is local, and if the system is critical then � diverges in the limit of in�nitevolume (in�nitely many agents).In this sense, equilibrium is never reached. Frustration can enhance this e�ect. For instance,spin glasses are extremely hard to equilibrate.Whether the system is critical depends on some conditions on the parameters which de-termine the equilibrium state (coupling constants). There exist examples where systems arealways critical, or at least almost. Pure gauge theories in 4 dimensions are like that. This is P.Bak's \self organized criticality" [29].Wilsons renormalization group furnishes criteria when this happens.At a critical point there are critical 
uctuations of arbitrary spatial extension. Typicallythey can also have arbitrary life time if the dynamics is local.A well known example is the critical point (Pc; Tc) of a real gas. The critical 
uctuations ofthe gases density give rise to critical opalescence.In a system with self interactions, 
uctuations can generate 
uctuations.The work reported here grew out of attempts to gain a deeper understanding of how to �ghtcritical slowing down in computer simulations of lattice gauge theory [16]. If the con�gurationsshow too much \will to live" and resistance against equilibration, this is the death of the MonteCarlo Method.Just because: Deterministic chaos and self organizationSelf organisation is the formation of complex structures out of simpler structures step by stepin such a way, that the persistence of these structures - either static or by reproduction - isfavored.It is claimed [7] that chaos in nature is not only everywhere but is actually indispensablefor the emergence of structure. A possible explanation could go like thischaos 7! chance 7! entropy production 7! stabilization of composite objectsIf entropy is produced when two objects form a composite object, then the process is irreversibleand redissociation into the original two objects is impossible or at least suppressed.This mechanism is familiar from physical chemistry; one would like to carry it over to auniversal theory.Actually it is very di�cult to make this idea precise. A proposal how to do it will besubmitted in what follows.Let us begin by recalling that chaotic behavior of a dynamical system means sensitivedependence on initial conditions, see �gure 4. A small change of the initial state �0 may leadto a large deviation after su�ciently long time. Typically it grows exponentially with time.14
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Figure 5: Sinai-BillardChaos in this sense combined with the limitations of a �nite measuring accuracy for theinitial state leads to unpredictability of the distant future. Examples in mechanics are wellknown1. The 3-body problem was already studied by Poincar�e [36, 33]2. Scattering of atoms in a gas. According to Boltzmann, this leads to entropy production.In a simpli�ed billiard model, one considers scattering o� �xed solid disks in a plane .A small initial uncertainty in the impact parameter leads to a small uncertainty in thescattering angle. This gets converted into uncertainty of the position which grows withtime. This leads to an uncertainty of the impact parameter for the next scattering, and soon. The uncertainty grows exponentially with the number of scatterings (�gure 5). Sinaishowed that this leads to a �nite Kolmogorov entropy, thereby con�rming Boltzmann'spicture [35]. The di�usion process associated with this scattering has also been studiednumerically [49, 38, 39].3. Computer simulations indicate that the motion of the earths axis of rotation were chaoticif it were not stabilized by the moon. This would have a�ected the constancy of thechange of seasons on earth and therefore the evolution of life [40]We wish to consider unpredictable events as random. This leads to entropy according toBoltzmann's formula, S = k ln(no. possibilities).It is proposed to implement this idea as follows. Chance is introduced by adding an un-detectable di�usion process to the Hamiltonian dynamics which a�ects only the stochasticcomponents of the motion and tends to equilibrate them.15



The di�usion may be thought of as a Brownian random motion which is superimposed onthe Hamiltonian time development. This leads to a Langevin equation which is equivalent to aFokker Planck equation for the distribution function �(�; t) in phase space.@@t� + fH; �g � D2 �H� = 0 : (29)This involves a positive semide�nite second order di�erential operator �D�H which is deter-mined by the Hamiltonian dynamics and a metric - see below.This is in the spirit of Prigogine's proposals concerning the origin of irreversibility [2].There are two related problems which need to be solved in order to specify the di�usionprocess.1. The picture of chaotic behavior shown in �gure 4 presupposes de�nition of a distance.Because of covariance under canonical transformations, there is no preferred choice ofcoordinates and no natural metric on phase space which would de�ne such a distance.2. One needs to separate chaotic and nonchaotic components of the deviation � 2 T�M froma given trajectory.The di�usion process is supposed to be undetectable. This demand refers to a detector witha �nite measuring accuracy. We are interested in the time development of subsystems underthe in
uence of the environment. We think of this in
uence as a continuing measuring processsuch that the �nite measuring accuracy is operational at all times. In other words, informationwhich has once become undetectable does not reemerge again later on.The metric on phase space which we will need embodies additional information beyond theHamiltonian dynamics. It is interpreted as the correlation matrix for the measuring accuracies,g��(�) =< ������ >.It is assumed that this metric is consistent with the symplectic structure. If so, it can be usedto separate the modes in the Jacobi equation for the deviation in a way which is stable undersmall perturbations of the dynamics. This separation singles out expanding and contractingdirections in T�M. In a Hamiltonian dynamics, expanding and contracting directions alwayscome in pairs. The di�usion process involves random forces which have components in theexpanding directions and in the dual contracting directions, but not in the others.Let us de�ne a microscopic entropyS(t) = ZM dv �(�; t) ln �(�; t): (30)This quantity would be constant under a purely Hamiltonian time development [2]. But uponadding the di�usion process, this changes. The Fokker Planck equation of motion for thedistribution function � impliesTheorem 7 (Second law of Thermo-Dynamics)1. The entropie cannot decrease with time,ddtS(t) � 0: (31)2. The entropy production ddtS can only vanish if the distribution function has vanishingdirectional derivatives ��@�� whenever � 2 T�ME is expanding or contracting. This issupposed to hold true for almost all �.The details will be given in the next section. T�ME consists of vectors which are tangent tothe energy surface H = E. 16



Structure is in the eye of the beholderAccording to our discussion of \things", structure is the formation of composite objects, ofcomposite objects out of composite objects etc. But which collections of objects should beconsidered as composite objects?A de�nition of a \virtual composite object" will be proposed which speci�es for everymicroscopic state �t 2 M which subcategories of the category Kt (of fundamental objects andtheir relations) can be regarded as composite objects.(They can overlap.) This de�nes theprobability for the existence of some virtual composite object, given the distribution function�. The de�nition depends not only on the Hamiltonian dynamics, but also on the metric. Inother words, \structure is in the eye of the beholder". It depends on measuring accuracies.In a gas, entropy depends on the number of degrees of freedom. In our situation we can countthe number d(�) of expanding directions in T�M. We call d(�) the dimension of instability.Given the categoryK which is determined by a point � 2 M in phase space, letO � Obj(K)be a subset of its objects, and consider the category K(O) which is generated by these objectsand the elementary relations among them.The state of the objects and elementary relations in K(O) is denoted by �O. All otherstate variables �� which describe the environment of K(O) are considered �xed. Suppose thatO = SOi is an arbitrary partition of O in disjoint nonempty subsets Oi. The state variablesare classi�ed accordingly. �O = f�Oi; �@Oig. Herein, f�@Oig are variables which determine thestate of arrows in K(O) which connect objects in di�erent subsets Oi. The categories K(O)and K(Oi) will have dimensions of instability d(�O) and d(�Oi), respectively.De�nition 8 (virtual composite object) K(O) is a virtual composite object if the followingstrict inequality on dimensions of instability is ful�lled for every nontrivial partition O = SOid(�O) >Xi d(�Oi)In words: The virtual composite object exists if it can be stabilized by entropy production. Itsmicroscopic state is �O, and its time development is given by eq.(131) of Appendix D.Let us note that K(O) cannot exist as a virtual composite object if it is not connected asa category, i.e. if it could be decomposed into two subcategories with no elementary relationsbetween.Stability properties of the dimension of instability under perturbations are discussed in thenext section.7 Construction of the di�usion processThe evolution in time of a deviation��t = ��(t) ; �(t) 2 T�tMalong a trajectory t 7! �t is described by the Jacobi-Equationddt��(t) = N�
(t)�
(t) (32)N�
(t) = �@
(!��@�H) : (33)17



The solution furnishes a map from one space to another��t0 : T�0M 7! T�tM: (34)It makes no sense to speak of eigenvalues of such a map in general.For this reason, the standard de�nitions of Liapunov exponents [34] assume a critical pointor periodic motion so that �t = �0. In this case, ��t0 is a symplectic map of T�0M whoseeigenvalues can be classi�ed in the standard fashion. Those eigenvalues which do not lie on theunit circle come in quadruples �; ��; ��1; ���1, or in pairs, if � is real.If we want to formulate a local thermo-dynamic equation of motion, and if we insist onour intention of accepting only the unstable (chaotic) modes of the motion as a source ofstochasticity, then we need a local stability criterion. It should not involve prevoyance of thedistant future, either.Krein's classic stability theory relies essentially on the behaviour of the eigenvalues of asymplectic matrix under small perturbations. In particular, an eigenvalue 6= 1 can leave theunit circle only if it collides with another eigenvalue. To preserve this stability property, wewant to interpret the map (34) as a symplectic map. This is only possible if we can identifythe two spaces in a natural way.Such an identi�cation is possible with the help of a metric connection on M which iscompatible with the symplectic structure.With its help, vectors � 2 T�tM can be parallel transported along the trajectory back intoT�0. The compatibility of the metric connection with the symplectic structure will ensure thatthe resulting map ��t0 : T�0 7! T�0: (35)is symplectic.A metric connection is given by1. a Riemannian metric on M, i.e. by a (positive) scalar product <;>� in T�M,< �; � >�= ��g��(�)�� : (36)2. a connection which is compatible with the metric. In a coordinate basis it is givenby connection coe�cients ���
(�) Compatibility with the metric means that the scalarproduct is invariant under parallel transport, or, equivalently, that the metric tensor iscovariantly constant, g��;
 = 0.The inverse metric tensor is denoted by g��. The connection may have a nonvanishing tor-sion S��
(�) = 12 ����
(�) � ��
�(�)�. We use the customary semicolon notation for covariantderivatives, e.g. !��;
 = @
!�� + ���
!�� + ���
!�� : (37)and similarly for the inverse metric tensor.It su�ces to consider in�nitesimal t. The time derivative of ��t0 equals the covariant timederivative of ��t0 and is described by the covariant Jacobi matrix K.Ddt��(t) = K��(�t)��(t) (38)K�
(�) = �@
(!��@�H) � !��@�H��
� : (39)K describes the time evolution of a deviation in a comoving basis. 4 It transforms covariantlyunder coordinate transformations and also under transition to an anholonomic basis.4By comoving we mean autoparallel along the trajectory18



De�nition 9 Compatibility of the symplectic structure with a metric connectionholds true if the volume form in local coordinates has the form dv = pgQ d�� and if!��;�!�
 � !
�;�!�� = 2fS���!��!�
 � S���!��!�
 � S
��!��!��g : (40)A metric is called compatible with the symplectic structure if there exists a corresponding metricconnection which is.Let us note that the condition is satis�ed if the symplectic matrix is covariantly constant andthe torsion vanishes. Using (40), one veri�es that the covariant Jacobi matrix is an element ofa symplectic Lie algebra, K��(�)!�
(�) +K
�!��(�) = 0 : (41)Therefore, the time evolution operator ��t in a comoving basis is described by a symplecticmatrix as desired. The covariant Jacobi matrix depends on the connection. But it will turnout that the di�usion process which we will construct depends only on the metric, at least ifK is diagonalizable.Example 10 Euclidean phase space M = R2n = f(p; q)g with the usual Euclidean metric andwith Poisson brackets fpi; qig = �ji .In a Hamiltonian dynamics with an invertible symplectic matrix one can always choose localcoordinates as in the example because of Darboux theorem. This shows that the condition canalways be ful�lled locally. This is enough to de�ne the di�usion processGiven the symplectic structure, there is in general much freedom to choose a metric. In theexample, the freedom of transformations p 7! �p; q 7! ��1 remains, for instance. In the reversedirection it is di�erent [37]. This suggests to consider the metric as the basic quantity. If weregard the detectors as part of the system, then the determination of the metric from initialconditions will have to invoke the same principles as in the case of the Hamiltonian.It follows from the symplecticity of ��t occur only in singlets, pairs and quadruples as follows[32]1. singlet 0;2. pairs �� (� real );3. pairs �; � (� imaginary ):4. quadruples ��;�� (� complex ).Eigenvectors to eigenvalues � with <� 6= 0 will be called hyperbolic . They are expanding if<� > 0 and contracting if <� < 0; Eigenvectors with <� = 0; � 6= 0 are called elliptic. (If Kis not diagonalizable, there can also be parabolic vectors. They are associated with a spectralvalue 0 of K. Compare Appendix D)For hyperbolic eigenvectors with Im� 6= 0 the expansion or contraction is associated witha rotation. We may imagine that the time evolution is discretized in such a way that expan-sion/contraction is alternating with rotations. We want to associate a di�usion process onlywith the expansion and contraction. As a simple illustration, a two dimensional example isdiscussed in Appendix D. In contrast with this example we shall wish to constrain the di�usionprocess to the energy surface, however. 19



De�nition 11 (Modulus of the covariant Jacobi matrix, di�usion operator) Suppose a Hamil-tonian dynamics is speci�ed together with a metric connection on M which is compatible withthe symplectic structure, with metric tensor D�1g��(�). 5 We denote the energy surface H = Eby ME. 6 Let �E(�) : T�M 7! T�ME the projector onto vectors which are tangential to theenergy plane, and let �i(�) the projectors which project onto real linear combinations of eigen-vectors of the covariant Jacobi matrix K(�) to eigenvalues (�; ��) with <� 6= 0. We de�ne thmodulus of the Jacobi matrix jK(�)j�� =Xi j<�ij�i(�)�� : (42)and its restriction to directions tangential to the energy surfacejKEj = �EjKj�E : (43)The di�usion operator associated with H is the following positive semide�nite di�erentialoperator of 2nd order on M, multiplied with D.��H = 1pg@�pgjKE j��g�
@
 : (44)Arbitrary vectors � 2 T�M are called hyperbolic, if � 2 range jKj.Proposition 12 (Independence of the di�usion process of the choice of connection) If K isdiagonalizable, then jKj, and therefore also jKEj and �H depend on the metric, which is as-sumed compatible with the symplectic structure, but they are independent of the choice of themetric connection.Proof: Consider the matrix ��t0 of the time evolution from t = 0 to t. Let the comovingbasis be �xed at t = 0, we choose it orthonormal. When the metric connection is changed, butnot the metric, then the new comoving frame at �t is obtained from the old one by a rotationVt = V ��1t . Therefore ��t0 7! V �t ��t0:Consequently, j��t0j2 = (��t0)���t0remains invariant. For small t we have ��t0 = 1+tK(�0). LetK(�0) =P�i�i. In an orthonormalbasis, the projection matrices �i are hermitian. Thereforej��t0j2 =X e2t<�i�i:It follows that 1t �12��t0j2 + 12 j��t0j�2 � 1� 12 = jKj(�0) +O(t) : (45)Therefore jKj is also invariant. q.e.d.In the parabolic case, K is triangular. This case was excluded by the assumption of diago-nalizability of K. We remark that the choice of eq.(45) as the general de�nition of jKj wouldlead to a di�usion process also for parabolic modes. We take the attitude that di�usion pro-cesses for parabolic modes belong to the realm of quantum mechanics, since they are associatedwith measuring uncertainties with < �pi�qi >6= 0.5We extract a factor D in order to be able to normalize the metric tensor g�� by convention.6In general relativistic theories E = 0 is often enforced by other constraints20



Corollary 13 jKj(�) maps the part T�ME of T�M which is tangential to the energy surface,to itself.Proof: Because of energy conservation, the time evolution of a deviation maps vectors whichare tangential to the energy surfaceME into vectors with the same property. The same is trueof the parallel transport of tangent vectors if we use the Riemannian connection on ME whichis furnished by the restriction of the metric to ME. In this way, jKj(�0) is de�ned as a map ofT�0ME to itself. q.e.d.With these de�nitions, the Fokker Planck equation of motion (29) for the distributionfunction can now be written down. The decisive di�erence compared to familiar versions of aFokker Planck equation as used e.g. in [3] consists in the fact that only the chaotic modes aresources of a di�usion process. If there are only stable (elliptic) modes, then the eigenvalues ofthe covariant Jacobi matrix are imaginary and �H = 0.Let us turn to a discussion of stability properties of the dimension of instability. By con-struction, K(�) is a symplectic matrix. If � changes, or if a perturbation is added, then a newexpanding direction, and therefore a rise of the dimension of instability can only arise out ofan eigenvalue 0 or if two eigenvalues collide on the circle. (According to Krein's theory theymust in addition have \opposite sign", cp. [32])This consideration implies in particular stability properties against in�nitesimal changes ofthe Riemannian metric.AcknowledgementsJutta Rockmann asked the right question: Why not use neural nets in lattice gauge theory?I thank my collaborators M. B�aker, T. Kalkreuter, M. Speh, Y. Xylander and M. Griessl fordiscussions and comments, Achi Brandt and Sorin Solomon for their very cordial hospitalityin Israel and for stimulating discussions, and S. Ullmann for showing me his nice example ofemergence. Financial support from DFG and a grant from GIF which made the visit to Israelpossible are also gratefully axcknowledged.Appendix A: Proof of the representation theorem 3 forcategoriesGiven a category K, we write Mor(Y; �) for the set of all its arrows to Y etc. We de�neIn(Y ) = Mor(Y; �) ; Out(Y ) = Mor(�; Y ) :We write X = �(f) if f 2 Mor(Y;X) � In(Y ), and correspondingly Z = !(f) if f 2Mor(Z; Y ) � Out(Y ). The output space will be de�ned as a subspace 
Y of 
virtY . 
virtYconsists of maps � : OutY 7!Mor(�; �)with the property �(f) 2Mor(!(f); �).An object Y will act as a map Y : In(Y ) 7! 
Y :21



according to Y f(g) = g �Y f (g 2 Out(Y )):The output space is de�ned as the image of Y , and the input space as space of equivalenceclasses (if necessary) of elements of InK(Y ), which Y maps into the same � 2 
virtY .
Y = IM Y � 
virtY ; (46)AY = In(Y )=KER Y : (47)Y is invertible as a map from AY to 
Y . Its inverse is �Y . The empty input ; 2 AY is de�nedas the equivalence class of �Y 2Mor(Y; Y ) � In(Y ).An arrow f 2Mor(Y;X) is de�ned as a map 
X 7! AY by use use of the map �X : 
Y 7! AY ,as follows. f = f̂ �X �X ; (48)f̂ (g) = f �X g for g 2Mor(X; �) : (49)The last formula de�nes f̂ as a map from In(X) to In(Y ). This map passes to equivalenceclasses (47) thereby de�ning a map AX 7! AY . The composition rule (21)holds. q.e.d.8 Appendix B: Lattice modelsGeometry of a hypercubic latticeWe consider a simplicial complex [50] or, more generally a cell complex. A hypercubic latticeis the simplest and most interesting case. But the following considerations can be generalized.The lattice of dimension � consists of 0-cells (sites), 1-cells (links), 2-cells (plaquettes =squares), possibly 3-cells (cubes) etc.Let Cn the set of all n-cells. The cells are oriented for n 6= 0. The cell with the oppositeorientation to c is denoted �c. Formal sumsC = Xc2Cn acc (50)of n-cells c with integer coe�cients are called n-chains. The boundary of (n + 1)-cell a n-cellwith coe�cients 0;�1. It is determined by the incidence matrix !.@c = Xe2Cn !cee (51)!cb = 1,(�1) if b is in the boundary of c, and if it has the same (opposite) orientation. Forinstance, a link b from site x to site y has boundary @b = y�x. The boundary @p of a plaquettep is the sum of four oriented links, etc.We stipulate that !ce = 0 if c is a n-cell and e is a k-cell with k 6= n� 1, and!ec = �!ce : (52)In this chapter we want to consider models of a hamiltonian dynamics in which the incidencematrix plays the role of the symplectic matrix !. The boundary of a boundary vanishes.@2 = 0: (53)22



Besides the boundary operator @ we will also need the coboundary operator @�. Thecoboundary @�e of a (n� 1)-cell e is a n-chain. It is de�ned by@�e = Xc2Cn !cec : (54)The dynamical variables of our models will be functions f which assign a real number f(c)to every cell c of some given dimension n. The de�nition of f can be extended to chains ofthe form (50) by setting f(C) = Pc2Cn acf(c). f becomes a Z-linear map from n-chains to R.Such functions are called n-cochains. The exterior derivative d and the coderivative d� act oncochains. They are de�ned by df(c) = f(@c) = Xe2Cn�1 !cef(e) : (55)d�g(c) = g(@�c) = Xe2Cn+1 !ecg(e) (56)for a n-chain c, (n � 1)-cochain f and (n + 1)-cochain g. They obey d2 = 0 = d�2. d� ist theadjoint operator of d in a space of square summable cochains.We will also write fc in place of f(c).A model with frustrationIn this model, the objects are labelled by the sites x of a �-dimensional hypercubic lattice.Their states are given by real variables �(x). The elementary arrows are assigned to links b.Their state is described by real variables �(b) = ��(�b)The symplectic matrix shall be given by the incidence matrix. As a Hamiltonian we adoptH = �12fXx �(x)�(�x) +Xb �(b)�(�b)g : (57)The sum runs over all sites x und all links b. Links which di�er only in orientation are notcounted twice. �(�x) is to be read as ��(x).The Poisson-brackets are f�(b); �(x)g = !bx : (58)The quantities d�(p) and d��(b) are degeneracy invariants. They are therefore determined bythe initial conditions. Let us demonstrate it for d�. Its only possibly nonvanishing Poissonbracket is fd�(p); �(x)g = Xb !pbf�(b); �(x)g (59)= Xb !pb!bx = 0 (60)because @2 = 0.We consider the case that the initial conditions �x the valuesd�(p) = �(p); (61)d�� = 0 (62)23



A similar situation arises in electrodynamics with electric charges or magnetic monopoles (Bothcases are related by a duality transformation).The Hamilton equations of motion areddt�(x) = d��(x) (63)ddt�(b) = �d�(b) (64)The composition of arrows shall be e�ected by addition of variables �(b) along the path.The identity arrow is represented by addition of 0.�(p) determines whether the category is frustrated or not. Let b1 � b01 and b2 � b02 the twopaths between diametrically opposite corners x and y of a plaquette p, and let f1 and f2 thecorresponding arrows fi = �(bi) + �(b0i). Depending on the orientation of the plaquettef�12 � f1 = ��(p) (65)The category is frustrated if f�12 � f1 6= �x for at least one p, i.e. if at least one �(p) 6= 0. Inthis model the frustration �(p) is a constant of motion.Let us now try to solve the constraint (61).�(b) = ~�(b) + d�(b) (66)Herein ~� is a particular solution. It can be considered given by � and possibly a cohomologyclass. The Poisson brackets are reproduced byf�(x); �(y)g = �xy:� is a function on sites. Assuming the lattice has no boundary, we can integrate (sum) byparts, and the Hamiltonian assumes the following formH = �12Xx [�(x)�(�x)+ �(x)��(x)] +Xb ~�(b)�(@b) + const : (67)In this formula �� = d�d is the Laplacian acting on functions on sites of the lattice.One veri�es that d�� is no longer a degeneracy invariant. Now it generates gauge transfor-mations of � ��(x) �Xb �(b)fd��(b); �(x)g = �d��(x) (68)The gauge function � lives on links b.This formulation has the draw back that the Hamiltonian has become complicated andcontains quantities which were furnished by he initial condition in the original formulation.A better alternative is a �rst order formalism where � is retained as a �eld besides �, andthe original Hamiltonian is retained. There is now again a degeneracy invariant�(b)� d�(b) (69)which is �xed by the initial conditions. This formalism generalizes to nonabelian gauge theories.24



Appendix C: Invariants and types of objectsWe consider �rst lattice gauge theory as an exampleIn lattice gauge theory a vector space Vx of some dimension N is attached to every site x.Linear maps U(C) : Vx 7! Vy (70)are associated with paths C on the lattice from x to y. They are known as parallel transporters.Compare eq.(26)�.The gauge group may be �xed by equipping the vector spaces with additional structurewhich is required to be invariant under parallel transport [18].An invariant scalar product < ; > is the most important example.< ; >: Vx � Vx 7! C (71)(v;w) 7! < v;w >x (72)with the invariance property < v;w >x=< U(C)v;U(C)w >y : (73)This leaves the freedom of gauge transformations which leave the scalar product invariantS(x) : Vx 7! Vx ; (74)< S(x)v;S(x)w >x = < v;w >x ; (75)U(C) 7! S(y)U(C)S(x)�1 (76)The group of such gauge transformations is isomorphic to U(N).Starting from some scalar product at a �xed site x̂ an invariant scalar product can be de�nedfor all x, if the invariance property (73) holds for closed paths C which begin and terminate atx = y = x̂.The gauge group is further reduced to SU(N) if the existence of a determinant is postulatedwhich is invariant under parallel transport.detx : Vx � :::� Vx 7! C ; (totally antisymmetric) (77)(v1; :::vN) 7! detx(v1 ^ ::: ^ vN) (78)detx(v1 ^ ::: ^ vN) = dety(U(C)v1 ^ ::: ^ U(C)vN) : (79)Let us mention that the linearity of the maps (70), the construction of tensor products of spacesWx = Vx 
 :::
 Vx of Vx, and the rules for parallel transport of vector products in these tensorproduct spaces Wx can all be interpreted as existence of invariants which are mapped intothemselves under parallel transport along closed paths. If the tensor product is changed in asuitable way [15], one arrives at quantum group gauge theories [17]We want to generalize this construction to arbitrary categories K. We use their represen-tation as communication networks.De�nition 14 (Invariants) An invariant is a functor which maps K or a category which isderived from K to an unfrustrated category k.The invariant is called real valued or a coupling constant, if the objects in k are subsets ofR. 25



We are interested in invariants which are de�ned for every category in some family. In orderto preserve the locality properties, inclusions should be respected. Therefore we demand thatthe functor on a subcategory should be de�ned by restriction.Example 15 : An object-invariant F of degree n is de�ned by a partition of objects X inequivalence classes [X], called types of objects, and mapsFX : 
X � :::
X 7!M[X] (n factors) (80)of n-fold products of output spaces in spaces M[X]. FX is de�ned for every object X and has thefollowing property. If there is an arrow from X to Y , then a map with the following propertiesis de�ned �[Y ][X] : M[X] 7! M[Y ] ; (81)�[X][X] = id ; �[Z][Y ]�[Y ][X] = �[Z][X] ; (82)and for every arrow f : X 7! Y�[Y ][X]FX(v1; :::; vn) = FY (Y fv1; :::; Y fvn) : (83)The de�ning properties of an object-invariant of degree n make it a functor. The functor mapsthe product category Kn 7 into an unfrustrated category with objects M[X] and arrows �[Y ][X].The composition of arrows in the image category is de�ned as the composition of maps. Sincethe arrows are maps, the image category is a communication network.The special case with only one type M[X] is especially important.The following type of invariant is similar to the object invariants.By assumption, the spaces 
X are di�erentiable manifolds. Therefore they possess tangentspaces T
X. The elements of Tv
X are tangent vectors to curves through v 2 
X . Givenf : X 7! Y , then Y f : 
X 7! 
Y is de�ned as a map, and therefore also the map of curves in
X into curves in 
Y . By canonical construction, this de�nes a map(Y f)� : T
X 7! T
Y (84)Example 16 (tangential invariant) A tangential invariant is de�ned by a partition of the ob-jects X in equivalence classes [X], and mapsLX : T
X � T
X 7!M[X] (85)in spaces M[X]: LX is de�ned for every object and has the same properties as the map FX foran object invariant of 2nd degree, except that the map Y f must be replaced by (Y f)�.The tangential invariants can be regarded as functors on a tangential category TK derivedfrom K.Finally there exist invariants for arrows f 2Mor(X;X).Example 17 : (loop invariant) A loop invariant G is de�ned by a partition of the objects intypes [X] and maps GX :Mor(X;X) 7!M[X] (86)7The input spaces in Kn are AX � :::�AX (n factors) etc. The action of objects and arrows is declared inthe natural way 26



in spaces M[X] with the following properties�[Y ][X] :M[X] 7! M[Y ] ; (87)�[X][X] = id ; �[Z][Y ]�[Y ][X] = �[Z][X] (88)such that for every arrow g : X 7! Y which possesses an inverse g�1 : Y 7! X�[Y ][X]GX(f) = GY (g �X f �X g�1) : (89)for every f 2Mor(X;X).The de�ning properties of a loop invariant make it into a functor of a category K 0 into anunfrustrated category. K 0 is the category which is obtained from K as follows. Its arrows arearrows connecting di�erent objects of K and the identity arrows, and its objects are arrowss 2Mor(X;X) of K. f �s g ist de�ned by composition of arrows in K.We give an example of a loop invariant. Let AX and 
X real vector spaces on which arrowsand objects act as linear maps. Then the trace of the map Xf : 
X 7! 
X associated withloops f 2Mor(X;X) is a loop invariant.By de�nition, the possibility of dividing in types is determined by the existing functorialmaps into unfrustrated categories.Intuitively this means that the communication network admits messages of an agent abouthis type. The message received by the recipient does not depend on the path which the messagetook. (Messages for which this is not the case might be called \gossip").Let us now discuss how Hamiltonians are constructed.Hamiltonians may be constructed out of invariants which do not depend on a choice ofcoordinates. They will then obey the relativity principle.Let b an arbitrary link and let f : X 7! Y the corresponding elementary arrow. Its state willbe determined by a point � 2 M as will be the states of the objects. Let F a object invariantsof degree 2. We write 	X = X; as before. SetHb(�) =Xa F aY (Y f	X ;	Y ) : (90)This ful�lls our locality postulates. We agree to include here also sel
inks s = (x; x) with whichthe arrow f�X is associated. In this case we getHx(�) =XF aX(	X ;	X) : (91)Sometimes object invariant F a of degree 1 exist. They also furnish contributionsHx(�) =XF aX(	X) (92)to the Hamiltonian, and the same is true of invariants of higher order.In the case of sel
inks s which connect a node x with itself, there exist additional possiblecontributions to H. They are constructed from loop invariants. Let f : X 7! X the arrowassociated with s. Set Hs(�) =Xa Ga(f) : (93)In addition to the Hamiltonian one needs a symplectic matrix !(�). Its pseudo-inverse 
(�) isan antisymmetric bilinear form T�M� T�M 7! R (94)27



Such bilinear forms can be made out of tangential invariants.For the purpose of formulating a Thermo-dynamics in the sense of Prigogine, a metric onM was needed. The metric tensor de�nes also a bilinear form (94), it must be symmetric andpositive de�nite.Appendix D: Dynamics and di�usion in a 2-dimensionalphase spaceIt is very instructive to consider the simplest possible example: time independent linear equa-tions of motion in a 2-dimensional phase space M = R2. The coordinates in M shall bedenoted by � = (�1; �2)t (column vector). The symplectic form shall be 
 = 2d�1 ^ d�2, hence!21 = �!12 = 1.The possible equations of motion and their solutions are given by 1-parameter groups ofsymplectic transformations. They are of the formddt�(t) = X�(t); (95)�(t) = �t�(0) ; �t 2 SL(2;R) (96)�t = expXt ; X 2 sl(2;R) ; (97)The generator X may be an elliptic, parabolic or hyperbolic element of sl(2;R) with eigen-values �i�, 0 or ��, � > 0, respectively.An unstable direction arises only in the hyperbolic case. This case will be considered �rst.8.1 Hyperbolic motionX can be diagonalized by real basis transformations. The Hamiltonian will then take the formH = ��1�2 (� > 0) : (98)The Hamiltonian equations of motion readddt�1(t) = ��1(t) ; ddt�2(t) = ���2(t) ; (99)with solution �1(t) = e+�t�1(0) ; �2(t) = e��t�1(0) ; (100)The point 0 is a critical point. The 1-direction is expanding, the 2-direction contracting, withLiapunov exponent ��.The equation of motion is already linear and is therefore identical to its linearization. TheJacobi matrix K = diag(�;��) : (101)The Hamiltonian equations of motion for the normalized distribution function read (Nota-tion: @i = @=@�i) ddt� + �(�1@1 � �2@2)� = 0 (102)28



The critical point 0 furnishes the solution�(�; t) = �(�1)�(�2): (103)If the distribution is Gaussian at time 0, then it remains Gaussian at all times.�(�; t) = �10(�1; t)�20(�2; t); (104)�10(�1; t) = (2�f10 (t))� 12 exp[�(�1)2=2f10 (t)] ; f10 (t) = �1e2�t ; (105)�20(�1; t) = (2�f20 (t))� 12 exp[�(�2)2=2f20 (t)] ; f20 (t) = �2e�2�t : (106)The parameter �i determine the width of the distribution at time 0.It is seen that the Gauss distribution in �1-direction expands exponentially with time t,��1 = e�t ; (107)while exponential contraction is observed in �2-direction. The microscopic entropyS = � Z d�1d�2�(�; t) ln �(�; t) = 12Xi [ ln 2��i(��i)2 + 1] (108)is constant in time, in agreement with general theory.Let us now examine what happens if we switch on a di�usion �@K+@ in the expandingdirection with strength 2�. K+ ist equal to the Jacobi operator, multiplied with the projectoron strictly positive eigenvalues.Explicitly K+ = diag(�; 0). The time evolution of the distribution function will now begoverned by ddt�� ��@21�+ �(�1@1 � �2@2)� = 0: (109)There exist again Gauss-distributed solutions of the form�(�; t) = �1(�1; t)�20(�2; t) (110)with unchanged second factor, and with�1(�1; t) = (2�f1(t))� 12 exp[�(�1)2=2f1(t)] ; f1(t) = �(e2�t � 1) : (111)This is the solution which develops from a �-function at time 0.An expanding Gauss packet is now found when the starting distribution is a �-function in�1 at time t = 0 as well. The width evolves according to��1 = ( (Dt) 12 when t 7! 0� 12 e�t when t 7! 1; (112)mit D = 2��. We see that the behavior at large t is the same as it was when there was nodi�usion but an initial width � > 0 at time t = 0.If we imagine that we may for the purpose of predictions convolute the initial distributionwith a Gauss-function of width ��1 = � because of �nite measuring accuracy, then the intro-duction of di�usion in the unstable direction has no detectable in
uence of the dynamics. Itonly simulates a �nite measuring accuracy. 29



According to Prigogine [2] the thermo-dynamic time evolution should di�er from the Hamil-tonian one by a term which is odd under time re
ection. This is not yet the case here. Butit can be achieved by introducing an additional di�usion term also in the stable direction. Weshall see that this is permissible in the same spirit of simulating a limited measuring accuracy.We replace K+ by K+ �K� and obtain as an equation for �ddt�+ �@(K+ �K�)@ + fH; �g = 0 (113)Explicitly, ddt� + ��(@21 + @22) + �(�1@1 � �2@2)� = 0 : (114)The solution which evolves from a � -function at time t = 0 is�(�; t) = �1(�1; t)�2(�2; t) (115)with �1 as before, and�2(�2; t) = (2�f2(t))� 12 exp[�(�2)2=2f2(t)] ; f2(t) = �(1 � e�2�t) : (116)The width of the distribution in �2 behaves as follows,��2 = ( (Dt) 12 when t 7! 0� when t 7! 1; (117)with D = 2��. We see that the width remains now �nite and equal to a hypothetical measuringuncertainty �,The expression (108) for the entropy is correct for every Gauss distribution. For large t, theentropy now increases linearly with timeS(t) = 1 + 12 ln[(2��)2(1� e�2�t)(e2�t � 1)] � �t : (118)Parabolic motionThe free motion of a particle furnishes the prototype of a parabolic dynamics. We write �1 inplace of p and �2 in place of q. The Hamiltonian is H = 12�(�1)2. The solution of the equationof motion is �1(t) = �1(0) ; �2(t) = �2(0) + �t�1(0) : (119)The equation of motion for the distribution function has the explicit formddt�� ��1@2� = 0 : (120)It possesses the Gauss-distributed solution�(�; t) = 2�(�1�2)� 12 expf� 12�1 (�1)2 + 12�2 (�2 � �t�1)2g : (121)The probability distribution of the individual coordinates obtains from this asp1(�1) = Z d�2�(�1; �2; t) = (2��1) 12 expf� 12�1 (�1)2g ; (122)p2(�2) = Z d�1�(�1; �2; t) = (2�f0(t)) 12 expf� 12f0(t)(�2)2g; (123)f0(t) = �1(�t)2 + �2 : (124)30



The mean square deviation of �1 remains bounded, while(��2)2 = �1(�t)2 + �2 : (125)An initial uncertainty of �2 alone does not create an uncertainty which grows with time. Butan initial uncertainty in momentum �1 creates an uncertainty square in position �2 which growsquadratically with time, but not exponentially as happened in the hyperbolic case.Let us assume that the measuring uncertainties �1 = (��1)2 and �2 = (��2)2 at time t = 0obey an uncertainty relation �1�2 � �h24 : (126)Then it follows from eq. (125), that (��1)2 � �h2�t :Let us tentatively introduce a di�usion term for �1 in the equation of motion for the distri-bution function. ddt�� ��1@2�� D2 @21� = 0 : (127)The equation has the Gauss-distributed solution�(�; t) = �(�1f(t))� 12 expf� 12�1 (�1)2 + 12f(t)(�2 � �t�1)2g ; (128)f(t) = Dt + �1 : (129)The distribution of the individual coordinates �i can be computed as before. The uncertaintyof �2 is constant in time and for the uncertainty of �1 we �nd(��2)2 = Dt + �2 + �1(�t)2 : (130)Assuming, the uncertainty relation (126) is valid at time 0, the asymptotic behaviour of ��2for large t remains the same as before.This could justify the introduction of a di�usion for parabolic motions also under restrictiveconditions on the measuring uncertainties. But all this looks very much like a simulation ofquantum mechanical e�ects. Therefore we will not consider it further. We will not introducedi�usion processes for parabolic modes in this paper.Let us note, however, that parabolic matrices can be obtained from hyperbolic matrices asa limit by a contraction. Therefore parabolic motions can be limits of hyperbolic motions. Asituation like this occurs in the Sinai billard. The time evolution operator ��0t for the deviationis hyperbolic for a short but �nite t if scattering occurs at time 0+ �. But it becomes parabolicin the limit t 7! 0. One should think of the scattering process as an idealization of a scatteringprocess which lasts a �nite time.Example: Elliptic motionThe 1-dimensional harmonic oscillator is the prototype of an elliptic motion. The Hamilto-nian is H = 12�f(�1)2 + (�2)2g:A detailed treatment is omitted. It is well known that an initial uncertainty in either �1 or�2 or both will lead to uncertainties which remain bounded for all times.In contrast to this, the introduction of a di�usion process into equation of motion for thedistribution function would lead to an uncertainty which grows with time. Therefore such adi�usion term cannot be justi�ed by the postulate of a �nite measuring accuracy.31



ConclusionThe introduction of a di�usion process in order to simulate a �nite measuring accuracy canbe justi�ed in the hyperbolic case. Under restrictive conditions on the measuring uncertaintiesthis is also true for the parabolic case, but not in the elliptic case. It is discussed in the maintext how to separate out the hyperbolic modes in case the phase space has more dimensions.In this case the motion is in general not simply either hyperbolic, or parabolic or elliptic, buta combinationA systematic discussion of possible di�usion processes for parabolic modes is not attemptedhere. It is made di�cult also by the nonapplicability of Krein's stability analysis (the symplecticmatrix has a zero spectral value). We adopt the attitude that this problem is solved by quantummechanics.Appendix D: Poynting vectorThe Hamiltonian time development of a virtual composite object, or of any subcategory of K,under the in
uence of its environment is given byddt�� = fHO; ��g+ F �ext (131)HO = Xb2Kt(O)Hb ; F �ext = Xb2@Kt(O)!�� @Hb@�� : (132)HO depends only on the state of the objects and arrows in Kt(O) ab. It describes the dynamicsin the absence of the in
uence of the environment. The exterior forces F �ext describe the in
uenceof the environment. We regard them as given by the state of the system at time t.The change of energy HO in O comes out of the equations of motion.ddt�� = fHO; ��g+ F �ext (133)HO = Xb2Kt(O)Hb ; F �ext = Xb2@Kt(O)!�� @Hb@�� : (134)It follows that ddtHO = �F �ext @@��HO : (135)According to formula for F �ext the in
ux of energy on the right hand side of eq.(135) is a sumof contributions of elementary arrows which point into O They sit on links b. ThereforeddtHO = � Xb2@Kt(O)Sb (136)Sb = @Hb@�� !�� @@��HO (137)We call S the Poynting vector as in electrodynamics. According to our assumptions aboutthe symplectic matrix only derivatives with respect to such variables occur, which indicate thestate of an object at the end of an arrow from outside. They come only from contributions Hb0of links b0 which point to these objects from inside.32
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