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A Mathematical Model for the Behavior ofIndividuals in a Social Field
AbstractRelated to an idea of Lewin, a mathematical model for behavioral changes under thein
uence of a social �eld is developed. The social �eld re
ects public opinion, socialnorms and trends. It is not only given by external factors (the environment) but alsoby the interactions of individuals. Two important kinds of interaction processes aredistinguished: Imitative and avoidance processes. Variations of individual behaviorare taken into account by \di�usion coe�cients".Key words: Behavioral model, �eld theory, di�usion model, decision theory, pairinteractions, imitative and avoidance processes



A Mathematical Model for the Behavior ofIndividuals in a Social Field1 IntroductionMany models have been developed for behavioral changes, but only a few are formulatedin terms of mathematical relations. For example,� game theory (von Neumann and Morgenstern, 1944), based on the concept ofsuccess of meeting strategies, is used for the description of cooperation and compe-tition processes among individuals,� decision theories (Domencich andMcFadden, 1975, Ort�uzar andWillumsen,1990), assuming the maximization of utility, successfully model the choice behavioramong several alternatives,� di�usion models (Coleman, 1964, Bartholomew, 1967, Granovetter, 1983,Kennedy, 1983) mathematically describe the spread of behaviors or opinions, ru-mors, innovations, etc.All these models are related to a more general behavioral model discussed in the fol-lowing. This model is based on Boltzmann-like equations and includes spontaneous (orexternally induced) behavioral changes and behavioral changes by pair interactions ofindividuals (sect. 2). These changes are described by transition rates. They re
ect theresults of mental and psychical processes, which could be simulated with the help of Os-good and Tannenbaum's (1955) congruity principle, Heider's (1946) balance theory orFestinger's (1957) dissonance theory. However, it is su�cient for our model to deter-mine the transition rates empirically (sect. 5). The ansatz used for the transition ratesdistinguishes imitative and avoidance processes, and assumes utility maximization by avariant of the multinomial logit model (Domencich and McFadden, 1975, Ort�uzarand Willumsen, 1990) (sect. 2.1).In section 3 a consequent mathematical formulation related to an idea of Lewin (1951) isdeveloped, according to which the behavior of individuals is guided by a social �eld. Thisformulation is achieved by a second order Taylor approximation of the Boltzmann-like equations leading to di�usion equations. Because of their relation with the Boltz-mann equation (Boltzmann, 1964) and the Fokker-Planck equation (Fokker, 1914,Planck, 1917) they will be called theBoltzmann-Fokker-Planck equations. Accord-ing to these new equations the most probable behavioral change is given by a vectorialquantity that can be interpreted as social force (sect. 3.1). The social force results from ex-ternal in
uences (the environment) as well as from individual interactions. In special casesthe social force is the derivative (gradient) of a potential. This potential re
ects publicopinion, social norms and trends, and will be called the social �eld. By di�usion coe�-cients individual variation of the behavior (the \freedom of will") is taken into account.In section 4 representative cases are illustrated by computer simulations.1



The Boltzmann-Fokker-Planck model for the behavior of individuals under the in-
uence of a social �eld shows some analogies with the physical model for the behavior ofelectrons in an electric �eld (e.g. of an atomic nucleus) (Helbing, 1992a,c). In particular,individuals and electrons in
uence the concrete form of the e�ective social, respectively,electric �eld. However, the behavior of electrons is governed by a di�erent equation: theSchr�odinger equation (Schr�odinger, 1926, Davydov, 1976).2 The Boltzmann-like behavioral modelLet us consider a population consisting of a great number N � 1 of individuals. Concern-ing a special topic of interest, these individuals show a behavior x out of several possiblebehaviors in the set 
.Due to \freedom of the will" one cannot expect a deterministic theory for the temporalchange dx=dt of the individual behavior x(t) to be realistic. However, one can constructa model for the change of the probability distribution P (x; t) of behaviors x(t) withinthe given population (P (x; t) � 0, Xx2
P (x; t) = 1). A theory of this kind is, of course,stochastic. In order to take into account several types a of behavior, we may distinguishA subpopulations a consisting of Na � 1 individuals ( AXa=1Na = N). Then, the followingrelation holds: P (x; t) = AXa=1 NaN Pa(x; t) : (1)Our goal is now to �nd a suitable equation for the probability distribution Pa(x; t) ofbehaviors within subpopulation a (Pa(x; t) � 0, Xx2
Pa(x; t) = 1). If we neglect memorye�ects (cf. sect. 6.1), the desired equation is of the formddtPa(x; t) = in
ow into x� out
ow from x : (2)Whereas the in
ow into x is given as the sum over all absolute transition rates describingchanges from an arbitrary behavior x0 to x, the out
ow from x is given as the sum overall absolute transition rates describing changes from x to another behavior x0. Since theabsolute transition rate of changes from x to x0 is the product wa(x0jx; t)Pa(x; t) of therelative transition rate wa(x0jx; t) for a change to behavior x0 given x, and the probabilityPa(x; t) of behavior x, we arrive at the explicit equationddtPa(x; t) = Xx02
(x0 6=x) hwa(xjx0; t)Pa(x0; t)�wa(x0jx; t)Pa(x; t)i : (3)wa(x0jx; t) has the meaning of a transition probablility from x to x0 per unit time andtakes into account the behavioral variations between the individuals (occurring evenwithin the same type a of behavior!).In the following we have to specify the relative transition rates wa(x0jx; t), which will turnout to be e�ective transition rates. If we restrict the model to spontaneous (or externally2



induced) behavioral changes and behavioral changes due to pair interactions, we have(Helbing, 1992a,c):wa(x0jx; t) := wa(x0jx; t) + AXb=1 Xy2
 Xy02
Nb ewab(x0;y0jx;y; t)Pb(y; t) : (4)wa(x0jx; t) describes the rate of spontaneous (resp. externally induced) transitions fromx to x0 for individuals of subpopulation a. ewab(x0;y0jx;y; t) is the transition rate for twoindividuals of types a and b to change their behaviors from x and y to x0 and y0, respec-tively, due to pair interactions. The total frequency of these interactions is proportionalto the probability Pb(y; t) of behavior y within subpopulation b and the number Nb ofindividuals of type b. We have to sum up over b, y, and y0 since all speci�cations ofthese variables are e�ectively connected with transitions from x to x0 of individuals ofsubpopulation a.Inserting (4) into (3), we now obtain the socalled Boltzmann-like equations (Helbing,1992a,c) ddtPa(x; t) = Xx02
 hwa(xjx0; t)Pa(x0; t)�wa(x0jx; t)Pa(x; t)i (5a)+ AXb=1 Xx02
Xy2
 Xy02
wab(x;y0jx0;y; t)Pb(y; t)Pa(x0; t)� AXb=1 Xx02
Xy2
 Xy02
wab(x0;y0jx;y; t)Pb(y; t)Pa(x; t) (5b)with wab(x0;y0jx;y; t) := Nb ewab(x0;y0jx;y; t) : (6)Obviously, (5b) depends nonlinearly (quadratically) on the probability distributionsPa(x; t) (resp. Pb(y; t)) which is due to the pair interactions.The Boltzmann-like equations originally had been developed for the description of thekinetics of gases (Boltzmann, 1964). However, they have also been applied to atti-tude formation (Helbing, 1992b,c) and the avoidance behavior of pedestrians (Helbing,1992c,d).It is possible to generalize the model to simultaneous interactions of an arbitrary numberof individuals (i.e., higher order interactions) (Helbing, 1992a,c). However, in most casesbehavioral changes are dominated by pair interactions (dyadic interactions). Many of thephenomena occurring in social interaction processes can already be understood in termsof pair interactions.2.1 The form of the transition ratesFor models of behavioral changes the following special form of the e�ective transitionrates (4) has been found to be suitable (Helbing, 1992b,c,e):wa(x0jx; t) := �a(t)Ra(x0jx; t) + AXb=1 �ab(t)hf1ab(t)Pb(x0; t)+ f2ab(t)Pb(x; t)iRa(x0jx; t) : (7)3



Here,� �a(t) is a measure of the rate of spontaneous (or externally induced) behavioralchanges within subpopulation a.� Ra(x0jx; t) [resp. Ra(x0jx; t)] is the readiness of an individual of subpopulation a tochange behavior from x to x0 spontaneously [resp. in pair interactions].� �ab(t) � Nb e�ab(t) is the interaction rate of an individual of subpopulation a withindividuals of subpopulation b.� f1ab(t) is a measure for the frequency of imitative processesx0;x0 � x;x0 (x 6= x0) ; (8)where an individual of subpopulation a takes over the behavior x0 of an individualof subpopulation b. The total frequency of imitative processes is proportional to theprobablility Pb(x0; t) of behavior x0 within subpopulation b.� f2ab(t) is a measure for the frequency of avoidance processesx0;x � x;x (x 6= x0) ; (9)where an individual of subpopulation a changes the behavior x to another behaviorx0 if meeting an individual of subpopulation b with the same behavior (de�antbehavior, snob e�ect). The total frequency of avoidance processes is proportional tothe probablility Pb(x; t) of behavior x within subpopulation b.A more detailled discussion of the di�erent kinds of interaction processes and of ansatz(7) is given in publications of Helbing (1992b,c,e).For Ra(x0jx; t) we take the quite general formRa(x0jx; t) = eUa(x0;t)�Ua(x;t)Da(x0;x; t) (10a)with Da(x0;x; t) = Da(x;x0; t) > 0(cf.Weidlich and Haag, 1988, Helbing, 1992c). Then, the readiness Ra(x0jx; t) for anindividual of subpopulation a to change behavior from x to x0 will be greater,� the greater the di�erence in the utilities Ua(:; t) of behaviors x0 and x,� the smaller the incompatibility (\distance") Da(x0;x; t) between the behaviors xand x0.Similar to (10a) we use Ra(x0jx; t) = eUa(x0;t)�Ua(x;t)Da(x0;x; t) ; (10b)4



and, therefore, allow the utility function Ua(x; t) for spontaneous (or externally induced)behavioral changes to di�er from the utility function Ua(x; t) for behavioral changes inpair interactions. Ansatz (10) is related to the multinomial logit model (Domencich andMcFadden, 1975, Ort�uzar and Willumsen, 1990). It assumes utility maximizationwith incomplete information about the exact utility of a behavioral change from x to x0,which is, therefore, estimated and stochastically varying (cf. Helbing, 1992c).Computer simulations of the Boltzmann-like equations (3), (7), (10) are discussed andillustrated in Helbing (1992b,c,e) (cf. also sect. 4).2.2 Special �elds of application in the social sciencesThe Boltzmann-like equations (3), (7) include a variety of special cases, which havebecome very important in the social sciences:� The logistic equation (Pearl, 1924, Verhulst, 1845) describes limited growthprocesses. Let us consider the situation of two behaviors x � x 2 f1; 2g (i.e.,Pa(1; t) = 1 � Pa(2; t)) and one subpopulation (A = 1). x = 2 may, for example,have the meaning to apply a certain strategy, and x = 1 not to do so. If onlyimitative processes 2; 2 � 1; 2 (11)and processes of spontaneous replacement1 � 2 (12)are considered, one arrives at the logistic equationddtP1(2; t) = ��1(t)R1(1j2; t)P1(2; t) + �11(t)f111(t)R1(2j1; t)�1� P1(2; t)�P1(2; t)� A(t)P1(2; t)�B(t)� P1(2; t)� : (13)� The gravity model (Zipf, 1946, Ravenstein, 1876) describes processes of exchangebetween di�erent places x. Its dynamical version results for Ra(x0jx; t) � 0, f1ab(t) �1, f2ab(t) � 0, and A = 1:ddtP (x; t) = �(t) Xx02
 "eU(x;t)�U(x0;t)D(x;x0) � eU(x0;t)�U(x;t)D(x0;x) #P (x; t)P (x0; t) : (14)Here, we have dropped the index a because of a = 1. P (x; t) is the probability ofbeing at place x. The absolute rate of exchange from x to x0 is proportional to theprobabilities P (x; t) and P (x0; t) at the places x and x0.D(x;x0) is often chosen as afunction of the metric distance kx�x0k between x and x0: D(x;x0) � D(kx�x0k).� The behavioral model ofWeidlich and Haag (1983, 1988,Weidlich, 1991, 1994)is based on spontaneous transitions. We obtain this model for f1ab(t) � 0 � f2ab(t)and Ua(x; t) := �a(x; t) + AXb=1 �ab Pb(x; t) : (15)5



Because of the dependence of the utilities Ua(x; t) on the behavioral distributionsPb(x; t) the model assumes indirect interactions, which are, for example, mediatedby the newspapers, TV or radio. �a(x; t) is the preference of subpopulation a forbehavior x. �ab are coupling parameters describing the in
uence of the behaviorialdistribution within subpopulation b on the behavior of subpoplation a. For �ab > 0,�ab re
ects the social pressure of behavioral majorities.� The game dynamical equations (Hofbauer and Sigmund, 1988, Schuster et. al.,1981, Helbing, 1992c,e, 1993) result for f1ab(t) � �ab, f2ab(t) � 0, andRa(x0jx; t) := max�Ea(x0; t)� Ea(x; t); 0� ; (16)where �ab := ( 1 if a = b0 if a 6= b and max(x; y) := ( x if x � yy if y > x : (17)For a detailled interpretation of these relations see Helbing (1992c,e).The explicit form of the game dynamical equations isddtPa(x; t) = Xx02
 hwa(xjx0; t)Pa(x0; t)�wa(x0jx; t)Pa(x; t)i (18a)+ �aa(t)Pa(x; t)hEa(x; t)� hEaii : (18b)Whereas (18a) again describes spontaneous behavioral changes (\mutations", inno-vations), (18b) re
ects competition processes leading to a \selection" of behaviorswith a success Ea(x; t) that exceeds the average successhEai := Xx02
Ea(x0; t)Pa(x0; t) : (19)The success Ea(x; t) is connected with the socalled payo� matrices Aab ��Aab(x;y)� by Ea(x; t) := Aa(x) + AXb=1Xy2
Aab(x;y)Pb(y; t) (20)(Helbing, 1992c,e). Aa(x) means the success of behavior x with respect to theenvironment.Since the game dynamical equations (18) agree with the selection mutation equa-tions (Hofbauer and Sigmund, 1988) they are not only a powerful tool in socialsciences and economy (Axelrod, 1984, von Neumann andMorgenstern, 1944,Schuster et. al., 1981, Helbing, 1992c,e, 1993), but also in evolutionary biology(Fisher, 1930, Eigen, 1971, Eigen and Schuster, 1979, Feistel and Ebeling,1989). 6



3 The Boltzmann-Fokker-Planck equationsWe shall now assume the set 
 of possible behaviors forms a continuous space. The ndimensions of this space correspond to di�erent characteristic aspects of the consideredbehaviors. In the continuous formulation, the sums in (3), (4) have to be replaced byintegrals: ddtPa(x; t) = Z
 dnx0 hwa(xjx0; t)Pa(x0; t)� wa(x0jx; t)Pa(x; t)i ; (21a)wa(x0jx; t) := wa(x0jx; t) + AXb=1 Z
 dny Z
 dny0Nb ewab(x0;y 0jx;y; t)Pb(y; t) : (21b)A reformulation of the Boltzmann-like equations (21) via a second order Taylor ap-proximation (Kramers-Moyal expansion (Kramers, 1940, Moyal, 1949)) leads todi�usion equations (Helbing, 1992a,c):@@tPa(x; t) = � nXi=1 @@xihKai(x; t)Pa(x; t)i+ 12 nXi;j=1 @@xi @@xj hQaij(x; t)Pa(x; t)i (22a)with the e�ective drift coe�cientsKai(x; t) := Z
 dnx0 (x0i � xi)wa(x0jx; t) (22b)and the e�ective di�usion coe�cients1Qaij(x; t) := Z
 dnx0 (x0i � xi)(x0j � xj)wa(x0jx; t) : (22c)Because of their relation with the Boltzmann equation (Boltzmann, 1964) and theFokker-Planck equation (Fokker, 1914, Planck, 1917) equations (22) will be calledthe Boltzmann-Fokker-Planck equations in the following (cf. Helbing 1992a,c). Inthe Boltzmann-Fokker-Planck equations the drift coe�cients Kai(x; t) govern thesystematic change (\drift", motion) of the distribution Pa(x; t), whereas the di�usioncoe�cients Qaij(x; t) describe the spread of the distribution Pa(x; t) due to 
uctuationsresulting from the individual variation of behavioral changes.For ansatz (7), the e�ective drift and di�usion coe�cients can be split into contributionsdue to spontaneous (or externally induced) transitions (k = 0), imitative processes (k =1), and avoidance processes (k = 2):Kai(x; t) = 2Xk=0Kkai(x; t) ; Qaij(x; t) = 2Xk=0Qkaij(x; t) ; (23a)1In a paper of Helbing (1992a) the expression for Qaij(x; t) contains additional terms due to anotherderivation of (22). However, they make no contributions, since they result in vanishing surface integrals(Helbing, 1992c). 7



where K0ai(x; t) := �a(t) Z dnx0 (x0i � xi)Ra(x0jx; t) ;K1ai(x; t) := AXb=1 �ab(t)f1ab(t) Z dnx0 (x0i � xi)Ra(x0jx; t)Pb(x0; t) ;K2ai(x; t) := AXb=1 �ab(t)f2ab(t) Z dnx0 (x0i � xi)Ra(x0jx; t)Pb(x; t) (23b)and Q0aij(x; t) := �a(t) Z dnx0 (x0i � xi)(x0j � xj)Ra(x0jx; t) ;Q1aij(x; t) := AXb=1 �ab(t)f1ab(t) Z dnx0 (x0i � xi)(x0j � xj)Ra(x0jx; t)Pb(x0; t) ;Q2aij(x; t) := AXb=1 �ab(t)f2ab(t) Z dnx0 (x0i � xi)(x0j � xj)Ra(x0jx; t)Pb(x; t) : (23c)The behavioral changes induced by the environment are included in K0ai(x; t) andQ0aij(x; t).3.1 Social force and social �eldThe Boltzmann-Fokker-Planck equations (22) are equivalent to the stochastic equa-tions (Langevin equations, 1908)dxidt = Fai(x; t) + nXj=1Gaij(x; t)�j(t) (24a)with Kai(x; t) = Fai(x; t) + 12 nXj;k=1 " @@xkGaij(x; t)#Gajk(x; t) (24b)and Qaij(x; t) = nXk=1Gaik(x; t)Gakj(x; t) (24c)(cf. Stratonovich, 1963, Helbing, 1992c). For an individual of subpopulation a thevector �a(x; t) with the components�ai(x; t) = nXj=1Gaij(x; t)�j(t) (25)describes the contribution to the change of behavior x that is caused by behavioral 
uctu-ations �(t) (which are assumed to be delta-correlated and Gaussian (Helbing, 1992c)).Since the di�usion coe�cients Qaij(x; t) and the coe�cients Gaij(x; t) are usually smallquantities, we have Fai(x; t) � Kai(x; t) (cf. (24b)), and (24a) can be put into the formdxdt �Ka(x; t) + 
uctuations. (26)8



Whereas the 
uctuation term describes individual behavioral variations, the vectorialquantity Ka(x; t) := 0BB@ Ka1(x; t)...Kan(x; t) 1CCA (27)drives the systematic change of the behavior x(t) of individuals of subpopulation a. There-fore, it is justi�ed to denoteKa(x; t) as social force acting on individuals of subpopulationa. With that we have attained a very intuitive formulation of social processes, accordingto which behavioral changes are caused by social forces.On the one hand, social forces in
uence the behavior of the individuals, but on the otherhand, due to interactions, the behavior of the individuals also in
uences the social forcesvia the behavioral distributions Pa(x; t) (cf. (21b), (22b)). That means, Ka(x; t) is afunction of the social processes within the given population.Under the integrability conditions@@xjKai(x; t) = @@xiKaj(x; t) for all i; j (28)there exists a time-dependent potentialVa(x; t) := � xZ dx0 �Ka(x0; t) � � nXi=1 xZ dx0iKai(x0; t) ; (29)so that the social force is given by its derivative (by its gradient r):Ka(x; t) = �rVa(x; t) ; i.e., Kai(x; t) = � @@xiVa(x; t) : (30)The potential Va(x; t) can be understood as social �eld. It re
ects the social in
uencesand interactions relevant for behavioral changes: the public opinion, trends, social norms,etc.3.2 Discussion of the concept of forceClearly, the social force is not a force obeying the Newtonian (1687) laws of mechanics(cf. Greenwood, 1988). Instead, the social force Ka(x; t) is a vectorial quantity withthe following properties:� Ka(x; t) drives the temporal change dx=dt of another vectorial quantity: the be-havior x(t) of an individual of subpopulation a.� The componentKab(x; t) := �ab(t) Z
 dnx0 (x0 � x)hf1ab(t)Pb(x0; t) + f2ab(t)Pb(x; t)iRa(x0jx; t) (31)of the social force Ka(x; t) describes the reaction of subpopulation a on the behav-ioral distribution within subpopulation b and usually di�ers from Kba(x; t), whichdescribes the in
uence of subpopulation a on subpopulation b.9



� Neglecting 
uctuations, the behavior x(t) does not change if Ka(x; t) vanishes.Ka(x; t) = 0 corresponds to an extremum of the social �eld Va(x; t), because itmeansrVa(x; t) = 0 ; i.e., @@xiVa(x; t) = 0 for all i 2 f1; : : : ; ng : (32)We will now compare our results with Lewin's (1951) social �eld theory. From socialpsychology it is well-known that the behavior of an individual is determined by the totalityof environmental in
uences and his or her personality. Inspired by electro-magnetic �eldtheory, social �eld theory claims that environmental in
uences can be considered as adynamical force �eld, which should be mathematically representable. A temporal changeof this �eld will evoke a psychical tension which, then, induces a (behavioral) compensation.In the following it will turn out that our model allows a fully mathematical speci�cationof the �eld theoretical ideas, which was still to be found:� Let us assume that an individual's objective is to behave in an optimal way withrespect to the social �eld Va(x; t), that means, he or she tends to a behavior corre-sponding to a minimum of the social �eld.� If the behavior x does not agree with a minimum of the social �eld Va(x; t) thisevokes a force Ka(x; t) = �rVa(x; t) (33)that is given by the gradient of the social �eld Va(x; t) (pulling into the directionof steepest descent of Va(x; t)). The force Ka(x; t) plays the role of the psychicaltension. It induces a behavioral change according todxdt �Ka(x; t) : (34)� The behavioral change dx=dt drives the behavior x(t) towards a minimumx�a of thesocial �eld Va(x; t). When the minimum x�a is reached, thenrVa(x; t) = 0 (35)holds and, therefore,Ka(x; t) = 0. As a consequence, the psychical tension vanishes,that means, it is compensated by the previous behavioral changes.When the psychical tension Ka(x; t) vanishes then, except for 
uctuations, no be-havioral changes take place|in accordance with (34). The individual has reachedan equilibrium within the social �eld, then.� Note, that the social �elds Va(x; t) of di�erent subpopulations a usually have dif-ferent minima x�a. This means that individuals of di�erent types a of behavior willnormally feel di�erent psychical tensions Ka(x; t). In other words, index a distin-guishes di�erent personalities. 10



4 Computer simulationsThe Boltzmann-Fokker-Planck equations are able to describe a broad spectrum ofsocial phenomena. In the following, some of the results shall be illustrated by computersimulations. We shall examine the case of A = 2 subpopulations, and a situation for whichthe interesting aspect of the individual behavior can be described by a certain positionx on a one-dimensional continuous scale (i.e., n = 1, x � x). A concrete example forthis situation would be the case of opinion formation. Here, conservative and progressivethinking individuals could be distinguished by di�erent subpopulations. The position xwould describe the grade of approval or disapproval with respect to a certain politicaloption (for example, SDI, power stations, Golf war, etc.).In the one-dimensional case, the integrability conditions (28) are automatically ful�lled,and the social �eld Va(x; t) = � xZx0 dx0Ka(x0; t)� ca(t) (36)is well-de�ned. The parameter ca(t) can be chosen arbitrarily. We will take for ca(t) thevalue that shifts the absolute minimum of Va(x; t) to zero, that means,ca(t) := minx 0@� xZx0 dx0Ka(x0; t)1A : (37)� Since we will restrict the simulations to the case of imitative or avoidance processes,the shape of the social �eld Va(x; t) changes with time only due to changes of theprobability distributions Pa(x; t) (cf. (23)), that means, due to behavioral changesof the individuals (see �gures 1 to 6).In the one-dimensional case one can �nd the formal stationary solutionPa(x) = Pa(x0)Qa(x0)Qa(x) exp0@2 xZx0 dx0 Ka(x0)Qa(x0)1A ; (38)which we expect to be approached in the limit of large times t!1. Due to the depen-dence of Ka(x) and Qa(x) on Pa(x), equations (38) are only implicit equations. However,from (38) we can derive the following conclusions:� If the di�usion coe�cients are constant (Qa(x) � Qa), (38) simpli�es toPa(x) = Pa(x0) exp � 2QahVa(x) + cai! ; (39)that means, the stationary solution Pa(x) is completely determined by the social�eld Va(x). Especially, Pa(x) has its maxima at the positions x�a, where the social�eld Va(x) has its minima (see �g. 1). The di�usion constant Qa regulates the widthof the behavioral distribution Pa(x). For Qa = 0 there were no individual behavioralvariations, and the behavioral distribution Pa(x) were sharply peaked at the deepestminimum x�a of Va(x). 11



� If the di�usion coe�cients Qa(x) are varying functions of the position x, the behav-ioral distribution Pa(x) is also in
uenced by the concrete form of Qa(x). From (38)one expects high behavioral probabilities Pa(x) where the di�usion coe�cientsQa(x)are small (see �g. 2, where the probability distribution P1(x) cannot be explainedsolely by the social �eld V1(x)).� Since the stationary solution Pa(x) depends on both, Ka(x) and Qa(x), di�erentcombinations of Ka(x) and Qa(x) can lead to the same probability distributionPa(x) (see �g. 4 in the limit of large times).For the following simulations, we shall assume x 2 [1=20; 1] and use the ansatzRa(x0jx; t) = eUa(x0;t)�Ua(x;t)Da(x0; x; t) (40a)for the readiness Ra(x0jx; t) to change from x to x0 (cf. (10a)). With the utility functionUa(x; t) := �12 �x� xala �2 ; la := La20 (40b)subpopulation a prefers behavior xa. La means the indi�erence of subpopulation a withrespect to variations of the position x. Moreover, we take�ab(t)Da(x0; x; t) := e�jx0�xj=r ; r = R20 ; (40c)where R can be interpreted as measure for the range of interaction. According to (40c),the rate of behavioral changes is the smaller the greater they are. Only small changesof the position (i.e., between neighboring positions) contribute with an appreciable rate.Figure 1 to 6 show the respective values of R, L1, and L2 used in the simulations.Note, that R and the readiness Ra are di�erent quantities. For very small values of therange R of interaction the di�usion coe�cientsQa(x) can be neglected and the 
uctuationsplay a neglible role, that means, behavioral changes are mainly given by the social �eld(see �g. 1). For greater but still small values of R, the di�usion coe�cients have tobe taken into account in order to fully understand the temporal development of thebehavioral distribution Pa(x; t) (see �g. 2). If R exceeds a certain value, the Taylorapproximation is invalid, and the Boltzmann-like equations should be applied insteadof the Boltzmann-Fokker-Planck equations.4.1 Sympathy and interaction frequencyLet sab(t) be the degree of sympathy which individuals of subpopulation a feel towardsindividuals of subpopulation b. Then, one expects the following: Whereas the frequencyf1ab(t) of imitative processes will be increasing with sab(t), the frequency f2ab(t) of avoidanceprocesses will be decreasing with sab(t). This functional relationship can, for example, bedescribed by f1ab(t) := f1a (t) sab(t) ;f2ab(t) := f2a (t)�1 � sab(t)� (41)12



with 0 � sab(t) � 1 : (42)f1a (t) is a measure for the frequency of imitative processes within subpopulation a, f2a (t)a measure for the frequency of avoidance processes. If we assume the sympathy betweenindividuals of the same subpopulation to be be maximal, we have s11(t) � 1 � s22(t).4.2 Imitative processes (f1a (t) � 1, f2a (t) � 0)In the following simulations of imitative processes we assume the preferred positions tobe x1 = 6=20 and x2 = 15=20. With�sab(t)� � �f1ab(t)� :=  1 10 1 ! ; (43)the individuals of subpopulation a = 1 like the individuals of subpopulation a = 2, butnot the other way round. That means, subpopulation 2 in
uences subpopulation 1, butnot vice versa.As expected, in both behavioral distributions Pa(x; t) there appears a maximum aroundthe preferred behavior xa. In addition, due to imitative processes of subpopulation 1, asecond maximumof P1(x; t) develops around the preferred behavior x2 of subpopulation 2.This second maximum is small, if the indi�erence L1 of subpopulation 1 with respect tovariations of the position x is low (see �g. 1). For high values of the indi�erence L1 eventhe majority of individuals of subpopulation 1 imitates the behavior of subpopulation 2(see �g. 2)! One could say, the individuals of subpopulation 2 act as trendsetters. Thisphenomenon is typical for fashion.We shall now consider the case�sab(t)� � �f1ab(t)� :=  1 11 1 ! ; (44)for which the subpopulations in
uence each other mutually with equal strengths. If theindi�erence La with respect to changes of the position x is small in both subpopulations a,each probability distribution Pa(x; t) has two maxima. The higher maximum is locatedaround the preferred position xa. A second maximum can be found around the positionpreferred in the other subpopulation. It is the higher, the greater the indi�erence La is(see �g. 3).However, if La exceeds a certain value in at least one subpopulation, a socalled phasetransition (that means, a qualitative di�erent situation) occurs, since only one maximumdevelops in each behavioral distribution Pa(x; t)! Despite the fact that the social �eldsVa(x; t) and di�usion coe�cients Qa(x; t) of the subpopulations a are di�erent becauseof their di�erent preferred positions xa (and di�erent utility functions Ua(x; t)), the be-havioral distributions Pa(x; t) agree after some time! Especially, the maxima x�a of thedistributions Pa(x; t) are located at the same position x� in both subpopulations. Onecould say, the two subpopulations made a compromise. The compromise x� is nearer tothe position xa of the subpopulation a with the lower indi�erence La (see �g. 4).13



4.3 Avoidance processes (f1a (t) � 0, f2a (t) � 1)For the simulation of avoidance processes we assume with x1 = 9=20 and x2 = 12=20 thatboth subpopulations nearly prefer the same behavior. Figure 5 shows the case, where theindividuals of di�erent subpopulations dislike each other:�sab(t)� :=  1 00 1 ! ; i.e., �f2ab(t)� �  0 11 0 ! : (45)This corresponds to a mutual in
uence of each subpopulation on the other. The compu-tational results indicate that� individuals avoid behaviors which are found in the other subpopulation.� The subpopulation a = 1 with the lower indi�erence L1 < L2 is distributed aroundthe preferred behavior x1 and pushes away the other subpopulation!Despite the fact that the initial behavioral distribution Pa(x; 0) agrees in both subpopula-tions, there is nearly no overlapping of P1(x; t) and P2(x; t) after some time. This is typicalof polarization phenomena in the society. Well-known examples are the development ofghettos or the formation of extremist groups.In �gure 6, we assume that the individuals of subpopulation 2 like the individuals ofsubpopulation 1 and, therefore, do not react to the behaviors in subpopulation 1 withavoidance processes:�sab(t)� :=  1 01 1 ! ; i.e., �f2ab(t)� �  0 10 0 ! : (46)As a consequence, P2(x; t) remains unchanged with time, whereas P1(x; t) drifts awayfrom the preferred behavior x1 due to avoidance processes. Surprisingly, the polarizatione�ect is much smaller than in �gure 5! The distributions P1(x; t) and P2(x; t) overlapconsiderably. This is, because the slope of P2(x; t) is smaller than in �gure 5 (and remainsconstant). As a consequence, the probability for an individual of subpopulation 1 to meeta disliked individual of subpopulation 2 with the same behavior x can hardly be decreasedby a small behavioral change. One may conclude, that polarization e�ects (which oftenlead to an escalation) can be reduced, if individuals do not return dislike with dislike.5 Empirical determination of the model parametersFor practical purposes one has, of course, to determine the model parameters from empiri-cal data. Therefore, let us assume we know empirically the distribution functions P ea (x; tl),[the interaction rates �eab(tl),] and the e�ective transition rates wae (x0jx; tl) (x0 6= x) fora couple of times tl 2 ft0; : : : ; tLg. The corresponding e�ective social �elds V ea (x; tl) anddi�usion coe�cients Qeaij(x; tl) are, then, easily obtained asV ea (x; tl) := � xZ dx0 �Kea(x0; tl) � � nXi=1 xZ dx0iKeai(x0; tl) (47a)14



with Keai(x; tl) := Z
 dnx0 (x0i � xi)wae (x0jx; tl) ; (47b)and Qeaij(x; tl) := Z
 dnx0 (x0i � xi)(x0j � xj)wae (x0jx; tl) : (48)Much more di�cult is the determination of the utility functions U ea(x; tl), Uae (x; tl), thedistance functions Dea(x0;x; tl), and the rates �ea(tl), �1eab(tl) := �eab(tl)f1eab (tl), �2eab(tl) :=�eab(tl)f2eab (tl). This can be done by numerical minimization of the error functionF := AXa=1 LXl=0 Xx;x02
(x0 6=x) 12 ("wae (x0jx; tl)� 1Da(x0;x; tl)ga(x0;x; tl)#P ea (x; tl))2 ; (49)for example with the method of steepest descent (cf. Forsythe et. al., 1977). In (49), wehave introduced the abbreviationga(x0;x; tl) := �a(tl)eUa(x0;tl)�Ua(x;tl)+ AXb=1 h�1ab(tl)P eb (x0; tl)+�2ab(tl)P eb (x; tl)ieUa(x0;tl)�Ua(x;tl) :(50)It turns out (cf. Helbing, 1992c), that the rates �a(tl) have to be taken constant duringthe minimization process (e.g., �a(tl) � 1), whereas the parameters Ua(x; tl), Ua(x; tl),�1ab(tl) := �eab(tl)f1ab(tl) and �2ab(tl) := �eab(tl)f2ab(tl) are to be varied. For 1=Da(x0;x; tl) oneinserts 1Da(x0;x; tl) = na(x0;x; tl)da(x0;x; tl) (51a)withna(x0;x; tl) := wae (x0jx; tl)ga(x0;x; tl)hP ea (x; tl)i2+ wae (xjx0; tl)ga(x;x0; tl)hP ea (x0; tl)i2(51b)and da(x0;x; tl) := hga(x0;x; tl)P ea (x; tl)i2+ hga(x;x0; tl)P ea (x0; tl)i2 : (51c)(51) follows from the minimum condition for Da(x0;x; tl) (cf. Helbing, 1992c).Since F may have a couple of minima due to its nonlinearity, suitable start parametershave to be taken. Especially, the numerically determined rates �1ab(tl) and �2ab(tl) have tobe non-negative.If F is minimal for the parameters Ua(x; tl), Ua(x; tl), Da(x0;x; tl), �a(tl), �1ab(tl) and�2ab(tl), this is (as can easily be checked) also true for the scaled parametersU ea(x; tl) := Ua(x; tl)� Ca(tl) ;Uae (x; tl) := Ua(x; tl)� Ca(tl) ;Dea(x0;x; tl) := Da(x0;x; tl)Da(tl) ;�ea(tl) := �a(tl)Da(tl) ;15



�1eab(tl) := �1ab(tl)Da(tl) ;�2eab(tl) := �2ab(tl)Da(tl) : (52)In order to obtain unique results we putXx2
U ea(x; tl) !� 0 ; Xx2
Uae (x; tl) !� 0 ; (53)and Xx;x02
(x0 6=x) 1Dea(x0;x; tl) !� Xx;x02
(x0 6=x) 1 ; (54)which leads to Ca(tl) := Xx2
Ua(x; tl)Xx2
 1 ; Ca(tl) := Xx2
Ua(x; tl)Xx2
 1 ; (55)and 1Da(tl) := Xx;x02
(x0 6=x) 1Da(x0;x; tl)Xx;x02
(x0 6=x) 1 : (56)Ca(tl) and Ca(tl) are mean utilities, whereas Da(tl) is a kind of unit of distance.The distances Dea(x0;x; t) are suitable quantities for multidimensional scaling (KruskalandWish, 1978, Young and Hamer, 1987). They re
ect the \psychical structure" (psy-chical topology) of individuals of subpopulation a, since they determine which behaviorsare more or less related (compatible) (comp. to Osgood et. al., 1957). By the dependenceon a, Dea(x0;x; t) distinguishes di�erent psychical structures resulting in di�erent types aof behavior and, therefore, di�erent \characters" (personalities).5.1 Evaluation of the German migration dataIt is not easy to �nd suitable data for the determination of the model parameters, sinceusually there only exist data for the temporal development of a certain behavioral dis-tribution Pa(x; tl), but not for the corresponding e�ective transition rates wae (x0jx; tl).However, for a few countries all necessary data are known about migration between dif-ferent regions (see Weidlich and Haag, 1988). In this case, the behavior x � x meansto live in region x 2 f1; 2; : : : ; Sg, where S is the number of distinguished regions.In the following, the results for migration in West Germany shall be presented. WestGermany is divided into 10 federal states and the region of West Berlin (see �gure 7 andtable 1). The data for these S = 11 regions can be found in the Statistische Jahrb�ucherof the years 1960 to 1985 on an annual basis (t0 = 1960, t1 = 1961, : : :, tL = 1985). Our16



data analysis will assume|with respect to migration|one more or less homogeneouspopulation, that means, we have A = 1, and the index a can be dropped. Figure 8 showssome examples for the temporal variation of the e�ective transition rates we(x0jx; tl).Using the method of steepest descent, the minimization of the error function (49), (50)gives the following results: �2(tl) � 0 ; (57)that means, avoidance processes are negligible. The rate �e(tl) of spontaneous behavioralchanges and the rate �1e(tl) of imitative processes are depicted in �gure 9. The utilityfunctions U e(x; tl) for spontaneous changes and the utility functions Ue(x; tl) for imitativeprocesses are illustrated in �gures 10 and 11.The irregulatity of the utility functions Ue(x; tl) indicates that they probably �t random
uctuations of the migration data. Indeed, a mathematical analysis proves that the term�1(tl)P e(x; tl)eU(x0;tl)�U(x;tl)D(x0; x; tl) = �1e(tl)P e(x; tl)eUe(x0;tl)�Ue(x;tl)De(x0; x; tl) (58)only explains 5.2 percent of the variance of the e�ective transition rates we(x0jx; t). There-fore, it makes no signi�cant contribution to their mathematical description, and the mi-gration rates we(x0jx; t) of West Germany can already be represented by the modelw(x0jx; tl) := �(tl)eU(x0;tl)�U(x;tl)D(x0; x; tl) = �e(tl)eUe(x0;tl)�Ue(x;tl)De(x0; x; tl) : (59)This result agrees with the model of Weidlich and Haag (1988)! Figure 12 showsthe corresponding rate �e(tl) of spontaneous changes, and �gure 13 depicts the utilityfunctions U e(x; tl). The distances De(x0; x; tl) can be calculated from the formulas (51),(52), and (56). They are not only a measure for the mean geographical distances, butalso for transaction costs (e.g., removal costs) and psychical di�erences (of the language,mentality, etc.).The replacement of the time dependent distances De(x0; x; tl) with the time independentvalues De�(x0; x) de�ned by 1De�(x0; x) := 1L + 1 LXl=0 1De(x0; x; tl) (60)(see table 2) allows for a further model reduction. The optimal value of the rate of spon-taneous behavioral changes is, then, given by�e�(tl) := �e(tl) � SXx;x0=1(x0 6=x) 1De(x0; x; tl) : (61)Although the reduced modelw(x0jx; tl) := �e�(tl)eUe(x0;tl)�Ue(x;tl)De�(x0; x) (62)only needs (S+1) � (L+1)+S � (S�1)=2 = 367 variables for the description of S � (S�1) �(L + 1) = 2860 e�ective transition rates we(x0jx; tl), it attains a very good correlation of0.984 with the empirical data. For a more detailled discussion of this model, seeWeidlichand Haag (1988). 17



6 Summary and outlookIn this article, a behavioral model has been proposed that incorporates in a consistent waymany models of social theory: the di�usion models, the multinomial logit model, Lewin's�eld theory, the logistic equation, the gravity model, theWeidlich-Haagmodel, and thegame dynamical equations. This very general model opens new perspectives concerninga theoretical description and understanding of behavioral changes, since it is formulatedfully mathematically. It takes into account spontaneous (or externally induced) behavioralchanges and behavioral changes due to pair interactions. Two important kinds of pairinteractions have been distinguished: imitative processes and avoidance processes. Themodel turns out to be suitable for computational simulations, but it can also be appliedto concrete empirical data.6.1 Memory e�ectsThe formulation of the model in the previous sections has neglected memory e�ects thatmay also in
uence behavioral changes. However, memory e�ects can be easily includedby generalizing the Boltzmann-like equations toddtPa(x; t) = tZt0 dt0 Xx02
 hwat�t0(xjx0; t0)Pa(x0; t0)� wat�t0(x0jx; t0)Pa(x; t0)i (63a)with the e�ective transition rateswat�t0(x0jx; t0) := wt�t0a (x0jx; t0) + AXb=1Xy2
 Xy02
wt�t0ab (x0;y0jx;y; t0)Pb(y; t0) ; (63b)and generalizing the Boltzmann-Fokker-Planck equations to@@tPa(x; t) = tZt0 dt0 � � nXi=1 @@xihK t�t0ai (x; t0)Pa(x; t0)i+12 nXi;j=1 @@xi @@xj hQt�t0aij (x; t0)Pa(x; t0)i� (64a)with the e�ective drift coe�cientsK t�t0ai (x; t0) := Z
 dnx0 (x0i � xi)wat�t0(x0jx; t0) ; (64b)the e�ective di�usion coe�cientsQt�t0aij (x; t0) := Z
 dnx0 (x0i � xi)(x0j � xj)wat�t0(x0jx; t0) ; (64c)andwat�t0(x0jx; t0) := wt�t0a (x0jx; t0) + AXb=1 Z
 dny Z
 dny0wt�t0ab (x0;y0jx;y; t0)Pb(y; t0) : (64d)18



Obviously, in these formulas there only appears an additional integration over past timest0 (Helbing, 1992c). The in
uence of the past results in a dependence of wat�t0(x0jx; t0),K t�t0ai (x; t0), and Qt�t0aij (x; t0) on (t � t0). The Boltzmann-like equations (5) resp. theBoltzmann-Fokker-Planck equations (22) used in the previous sections result from(63) resp. (64) in the limit of short memory.6.2 Group dynamicsThe force model described in section 3 can serve as a new mathematicalmodelling concept.For example, it has successfully been applied to the simulation of pedestrian behavior (cf.Helbing, 1991).Another interesting �eld is an application of the force model to group dynamics and groupformation. In this case we take A = N , that means, each subpopulation consists of oneindividual only (Na = 1). SinceNa � 1 is violated, then, the temporal change dPa(x; t)=dtof Pa(x; t), which describes the probability of individual a to show the behavior x at time t,is additionally subject to 
uctuations (cf. Helbing, 1992a,c). The interaction rates �ab �e�ab are related to the adjacency matrix and describe the social (interpersonal) network(Burt, 1982). Moreover, the sympathy matrix �sab(t)� is a�ected by the social processes.The crucial task for simulating group dynamics is, therefore, to set up equations for thetemporal change of sab(t). The topic of group dynamics will be treated in a forthcomingpaper.

19



AcknowledgementsThis work has been �nancially supported by the Volkswagen Stiftung and the DeutscheForschungsgemeinschaft (SFB 230). The author is grateful to Prof. Dr. W. Weidlich andDr. R. Reiner for valuable discussions and commenting on the manuscript.ReferencesAxelrod, R. (1984) The Evolution of Cooperation. Basic Books, New York.Bartholomew, D. J. (1967) Stochastic Models for Social Processes. Wiley, London.Boltzmann, L. (1964) Lectures on Gas Theory. University of California, Berkeley.Burt, R. S. (1982) Towards a Structural Theory of Action. Network Models of SocialStructure, Perception, and Action. Academic Press, New York.Coleman, J. S. (1964) Introduction to Mathematical Sociology. The Free Press ofGlencoe, New York.Davydov, A. S. (1976) Quantum Mechanics: x75. 2nd edition, Pergamon Press, Ox-ford.Domencich, Th. A., and McFadden, D. (1975) Urban Travel Demand. A BehavioralAnalysis: pp. 61{69. North-Holland, Amsterdam.Eigen, M. (1971) The selforganization of matter and the evolution of biological macro-molecules. Naturwissenschaften 58: 465.Eigen, M., and Schuster, P. (1979) The Hypercycle. Springer, Berlin.Feistel, R., and Ebeling, W. (1989) Evolution of Complex Systems. Kluwer Academic,Dordrecht.Festinger, L. (1957) A Theory of Cognitive Dissonance. Row & Peterson, Evanston,IL.Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford UniversityPress, Oxford.Fokker, A. D. (1914) Ann. Phys. 43: 810.Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1977) Computer Methods forMathematical Computations. Prentice Hall, Englewood Cli�s, N.J.Granovetter, M. (1983) Threshold models of di�usion and collective behavior. Jour-nal of Mathematical Sociology 9: 165{179.Greenwood, D. T. (1988) Principles of Dynamics. 2nd edition, Prentice-Hall, Engle-wood Cli�s, N.J.Heider, F. (1946) Attitudes and cognitive organization. Journal of Psychology 21:107{112.Helbing, D. (1991) A mathematical model for the behavior of pedestrians. BehavioralScience 36: 298{310.Helbing, D. (1992a) Interrelations between stochastic equations for systems with pair20



interactions. Physica A 181: 29{52.Helbing, D. (1992b) A mathematical model for attitude formation by pair interac-tions. Behavioral Science 37: 190{214.Helbing, D. (1992c) Stochastische Methoden, nichtlineare Dynamik und quantitativeModelle sozialer Prozesse. PhD thesis, University of Stuttgart. Published by Shaker,Aachen, 1993.Helbing, D. (1992d) A 
uid-dynamic model for the movement of pedestrians. Com-plex Systems 6: 391{415.Helbing, D. (1992e) A mathematical model for behavioral changes by pair interac-tions. In: G. Haag, U. Mueller, and K. G. Troitzsch (eds.) Economic Evolution andDemographic Change, pp. 330{348. Springer, Berlin.Helbing, D. (1993) Stochastic and Boltzmann-likemodels for behavioral changes, andtheir relation to game theory. Physica A 193: 241{258.Hofbauer, J., and Sigmund, K. (1988) The Theory of Evolution and Dynamical Sys-tems. Cambridge University Press, Cambridge.Kennedy, A. M. (1983) The adoption and di�usion of new industrial products: Aliterature review. European Journal of Marketing 17(3): 31{88.Kramers, H. A. (1940) Physica 7: 284.Kruskal, J. B., and Wish, M. (1978) Multidimensional Scaling. Sage, Beverly Hills.Langevin, P. (1908) Comptes. Rendues 146: 530.Lewin, K. (1951) Field Theory in Social Science. Harper & Brothers, New York.Moyal, J. E. (1949) J. R. Stat. Soc. 11: 151{210.von Neumann, J., and Morgenstern, O. (1944) Theory of Games and Economic Be-havior. Princeton University Press, Princeton.Newton, I. (1687) Philosophiae Naturalis Principia Mathematica.Ort�uzar, J. de D., and Willumsen, L. G. (1990) Modelling Transport. Wiley, Chich-ester.Osgood, Ch. E., Suci, G. J., and Tannenbaum, P. H. (1957) The Measurement ofMeaning: Chapter 6. University of Illinois Press, Urbana.Osgood, Ch. E., and Tannenbaum, P. H. (1955) The principle of congruity in theprediction of attitude change. Psychological Review 62: 42{55.Pearl, R. (1924) Studies in Human Biology. Williams & Wilkins, Baltimore.Planck, M. (1917) Sitzungsber. Preuss. Akad. Wiss., p. 324.Ravenstein, E. (1876) The birthplaces of the people and the laws of migration. TheGeographical Magazine III: 173{177, 201{206, 229{233.Schr�odinger, E. (1926) Quantisierung als Eigenwertproblem. Annalen der Physik 79.Schuster, P., Sigmund, K., Hofbauer, J., Wol�, R., Gottlieb, R., and Merz, Ph. (1981)Selfregulation of behavior in animal societies I{III. Biol. Cybern. 40: 1{25.21



Statistische Jahrb�ucher 1960{1985, WiesbadenStratonovich, R. L. (1963) Topics in the Theory of Random Noise, Vols. 1 & 2. Gor-don and Breach, New York.Verhulst, P. F. (1845) Nuov. Mem. Acad. Roy. Bruxelles 18: 1.Weidlich,W. (1991) Physics and social science|The approach of synergetics. PhysicsReports 204: 1{163.Weidlich, W. (1994) Synergetic modelling concepts for sociodynamics with applica-tion to collective political opinion formation. Journal of Mathematical Sociology, inprint.Weidlich, W., and Haag, G. (1983) Concepts and Models of a Quantitative Sociology.The Dynamics of Interacting Populations. Springer, Berlin.Weidlich, W., and Haag, G. (eds.) (1988) Interregional Migration. Springer, Berlin.Young, F. W., and Hamer, R. M. (1987) Multidimensional Scaling: History, Theory,and Applications. Lawrence Erlbaum Associates, Hillsdale, N.J.Zipf, G. K. (1946) The P1P2/D hypothesis on the intercity movement of persons.American Sociological Review 11: 677{686.

22



Figure 1: Imitative processes in the case of one-sided sympathy and low indi�erenceLa with respect to behavioral changes.



Figure 2: As �gure 1, but for high indi�erence La with respect to behavioral changes.



Figure 3: Imitative processes for mutual sympathy and low indi�erence La in bothsubpopulations.



Figure 4: As �gure 3, but for high indi�erence L2 in subpopulation 2.



Figure 5: Avoidance processes for mutual dislike of both subpopulations.



Figure 6: Avoidance processes for one-sided dislike.

Figure 7: The subdivision of West Germany into eleven federal states (from Weidlichand Haag, 1988).



symbol region x name+ 1 Schleswig-Holstein� 2 Hamburg4 3 Niedersachsen2 4 Bremen3 5 Nordrhein-Westfalen� 6 Hessen1 7 Rheinland-Pfalz� 8 Baden-W�urttemberg5 9 Bayernn 10 Saarland/ 11 BerlinTable 1: The eleven federal states of West Germany, their names, and the symbols usedin the following �gures.



Figure 8: Time dependence of some e�ective transition rates of migration in West Ger-many.

Figure 9: Rate �e(tl) of spontaneous behavioral changes (2) and rate �1e(tl) of imitativeprocesses (4) calculated from the migration data of West Germany.



Figure 10: Utility functions for spontaneous removals from one federal state to another inWest Germany.

Figure 11: Utility functions for removals from one federal state to another due to imitativeprocesses.



Figure 12: Rate of spontaneous migration in West Germany for the model of Weidlichand Haag.

Figure 13: Utility functions of the federal states of West Germany for the model of Wei-dlich and Haag. Note, that the utility of West Berlin (/) is extremely dependent onchanges of the political situation. For example, there is an remarkable increase of theutility after the erection of the Berlin wall in the year 1961.
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